@misc{KotlarskiOrmanovaNikitinetal., author = {Kotlarski, Georgi and Ormanova, Maria and Nikitin, Alexander and Morozova, Iuliia and Ossenbrink, Ralf and Michailov, Vesselin and Doynov, Nikolay and Valkov, Stefan}, title = {Structure Formation and Mechanical Properties of Wire Arc Additively Manufactured Al4043 (AlSi5) Components}, series = {Metals}, volume = {14}, journal = {Metals}, number = {2}, issn = {2075-4701}, doi = {10.3390/met14020183}, abstract = {In the current paper, the correlation between the physical size of additively built wire arc specimens and their structure and properties is studied. For the purpose of this work, two oval shaped specimens of different lengths were manufactured under the same technological conditions. The specimens have a length of 200 mm and 400 mm and will be referred to as L200 and L400. The microstructure of the samples was studied using X-ray diffraction analysis (XRD), optical microscopy, and scanning electron microscopy (SEM). The microhardness, yield strength (YS), and ultimate tensile strength (UTS) were determined and their correlation with the technological conditions of specimen build-up was clarified. The results of the carried out experiments indicated that the crystallographic structure of both specimens is similar. The scanning electron microscopy images show a higher concentration of irregularly shaped micro-pores formed near the edge of the αAl grains in the structure of the L400 specimen compared to the L200 one. An increase in the size of the αAl solid solution grains in the case of the L200 specimen towards its top section was noticed using optical microscopy. A slightly lower magnitude change was noticed concerning the L400 specimen. The increase in the size of the aluminum crystals was determined to be the increasing interpass temperature. Due to the much smaller thermal dissipation capacity of the smaller specimen, the interpass temperature of the same increased faster compared to the larger specimen. All of the above-mentioned factors led to a decrease in the microhardness of the specimens at higher stages of build-up. Since the specimens were deposited using similar layer deposition conditions, the resultant YS and UTS data are also highly comparable.}, language = {en} } @misc{KotlarskiOrmanovaNikitinetal., author = {Kotlarski, Georgi and Ormanova, Maria and Nikitin, Alexander and Morozova, Iuliia and Ossenbrink, Ralf and Michailov, Vesselin and Doynov, Nikolay and Valkov, Stefan}, title = {Microstructural and Mechanical Properties of CAP-WAAM Single-Track Al5356 Specimens of Differing Scale}, series = {Materials}, volume = {12}, journal = {Materials}, number = {1}, issn = {2075-1702}, doi = {10.3390/machines12010072}, abstract = {The mass production of metallic components requires high agility in the working process conditioned by the necessity of building details of different shapes and sizes. Changing the size of the components theoretically influences the thermal dissipation capability of the same, which could lead to a change in their structure and mechanical properties. This is particularly important when aluminum alloys are concerned. For this reason, two Al5356 single-track specimens were built using the same technological conditions of layer deposition by varying only their geometrical size. In all cases, the specimens were wire and arc additively manufactured (WAAM) using a process based on gas metal arc welding (GMAW) in the cold arc pulse mode (CAP). The structure of both specimens was studied and defects along their surfaces were detected in the form of micro-pores and micro-cracks. A high concentration of undissolved Mg particles was also detected, along with some standalone Si particles. Uniformity in the build-up process was achieved, which led to the formation of nearly identical structures in the specimens. Subsequently, the resultant mechanical properties were also highly comparable. This indicates that the geometry-related variation in thermal conditions has an insignificant influence on the component's structure and properties.}, language = {en} } @misc{MorozovaKehmObrosovetal., author = {Morozova, Iuliia and Kehm, Christian and Obrosov, Aleksei and Yang, Yitong and Miah, Kamal Uddin Mohammad and Uludintceva, Elena and Fritzsche, Sebastian and Weiß, Sabine and Michailov, Vesselin}, title = {On the Heat Treatment of Selective-Laser-Melted 316L}, series = {Journal of Materials Engineering and Performance}, volume = {32 (2023)}, journal = {Journal of Materials Engineering and Performance}, number = {10}, issn = {1544-1024}, doi = {10.1007/s11665-022-07404-0}, pages = {4295 -- 4305}, abstract = {The effect of heat treatment at various temperatures (650, 850, 1050, and 1100°C) and dwell times (10 min and 1 h) on the metallurgical and microstructural evolution as well as on the related tensile properties of stainless steel 316L processed by selective laser melting (SLM) has been systematically evaluated. The metallurgical and microstructural features such as defects, stability of the columnar-cellular structure and substructure, second phase particles, and phase transformation imparted by SLM and heat treatment have been discussed. It has been shown that the processing conditions specific to SLM significantly alter the kinetics of phase evolution compared to standard welding techniques which affects the accuracy of the prediction. The influence of these characteristics on tensile properties and hardness was elucidated. It was disclosed that with increasing heat treatment temperature there was a gradual increase in elongation but a decrease in strength related to the dislocation density and the development of the microstructure.}, language = {en} } @misc{HagenKlinkenbergOssenbrinketal., author = {Hagen, Christian and Klinkenberg, Franz-Josef and Ossenbrink, Ralf and Michailov, Vesselin}, title = {Resistance spot welding of dissimilar material joints with a cold-gas-sprayed inlayer}, series = {The International Journal of Advanced Manufacturing Technology}, journal = {The International Journal of Advanced Manufacturing Technology}, issn = {1433-3015}, doi = {10.1007/s00170-023-11897-x}, pages = {12}, abstract = {In this publication, cold gas spraying (CGS) is investigated as an enabler for aluminum-steel joints. Using a powder-based coating process to adhere a steel layer to an aluminum substrate allows a steel component to be welded to the deposited layer by resistance spot welding. This method permits the metallurgical connection between similar materials to be separated, while mechanical bonding ensures the connection at the dissimilar aluminum-to-inlayer interface. A modification of the porous CGS layer, as well as the creation of the remelted zone in the aluminum, can be observed during the resistance spot welding process. Electron backscatter diffraction (EBSD) analyses show that the severely prestressed particles in the CGS coating recrystallize, which coincides with a decrease in defect density and hardness in the heat-affected zone. Microscopy of the aluminum substrate shows the creation of metallurgical pores as well as the expansion of pores attributed to the casting process. The rise in remelted aluminum hardness and decrease in the heat-affected zone of the CGS layer indicate the formation of a metallurgical notch.}, language = {en} } @misc{HantelmannFritzscheMichailovetal., author = {Hantelmann, Cord and Fritzsche, Sebastian and Michailov, Vesselin and Boywitt, Ralf and Risse, Steffen and P{\"o}ge, Matthias and Vogelsang, J{\"o}rg and Cramer, Heidi}, title = {Geschweißte Konstruktionen aus Aluminiumschaumsandwich}, series = {Schweißen und Schneiden}, volume = {75}, journal = {Schweißen und Schneiden}, number = {12}, issn = {0036-7184}, pages = {912 -- 922}, abstract = {Im vorgestellten Projekt wurden werkstoff- und konstuktionsgerechte Knotenformen aus Aluminiumschaumsandwich (engl. Aluminium Foam Sandwich, AFS) gestaltet und mit unterschiedlichen Schweißverfahren wie dem Metall-Inertgasschweißen und dem R{\"u}hrreibschweißen gef{\"u}gt und gepr{\"u}ft. Im Rahmen der Arbeiten stand dabei die schweißtechnische Verarbeitung von AFS mit anderen Produkten, wie den Strangpressprofilen oder dem Aluminiumvollmaterial, und deren Beanspruchbarkeit im Vordergrund. In umfangreichen Untersuchungen wurden hierzu sowohl die Verbindugsknoten selbst als auch der Sandwichverbund und die Einzelkomponenten des Sandwich, Schaum und Decklagen, anhand der statischen Festigkeit und Schwingfestigkeit bewertet. Zus{\"a}tzlich wurden innere Sch{\"a}digungsmechanismen betrachtet. Mit experimentellen und numerischen Nachweismethoden konnte die anwendungssichere Knotengestaltung, -anbindung und -berechnung der unterschiedlichen Verbindungstypen umgesetzt werden. Die Ergebnisse wurden im Rahmen der Nachweisf{\"u}hrung gegen{\"u}bergestellt und hinsichtlich eines praxisgerechten Einsatzes nach FKM-Richtlinie bzw. Eurocode9 bewertet. Mit den ermittelten Ergebnissen wurde die bisherige Gestaltungs- und F{\"u}gerichtlinie um neue Verbindungstypen erweitert.}, language = {de} } @misc{ShapovalovOstKukeetal., author = {Shapovalov, Oleg and Ost, Lucas and Kuke, Felix and Doynov, Nikolay and Ambrosio, Marcello and Seidlitz, Holger and Michailov, Vesselin}, title = {Entwicklung und Analyse einer F{\"u}gestrategie f{\"u}r FKV/Metall-Mischverbindungen auf Basis der CMT-Pinschweißtechnik}, series = {Joining Plastics}, volume = {17}, journal = {Joining Plastics}, number = {1}, issn = {1864-3450}, pages = {28 -- 35}, abstract = {Dieser Beitrag stellt eine Entwicklung, Anpassung und Untersuchung der neuartigen Pinschweißtechnik zur Verbindung thermoplastischer Faserkunststoffverbunde mit metallischen F{\"u}gepartnern dar. Die untersuchte F{\"u}getechnik bietet, im Vergleich zu anderen Verfahren, neben einer einseitigen Zug{\"a}nglichkeit, ein hohes Leichtbaupotenzial. An Multimaterial-Einzelpinverbindungen wurden die CMT-Pinschweißbarkeit charakterisiert und unterschiedliche F{\"u}gestrategien erprobt und ausgewertet. Als Bewertungskriterien wurden das Schweißgut sowie der Faser- und Matrixerhalt in Abh{\"a}ngigkeit von den Schweißparametern untersucht. Die mechanische Beanspruchbarkeit der mit dem entwickelten Verfahren erstellten Verbindungen wurde in Scherzugversuchen ermittelt. An Mehrpinverbindungen wurde anschließend der Einfluss der Pinanordnung untersucht und die Auslegung der F{\"u}gezone analysiert. Der F{\"u}geprozess wurde an Funktionsmustern und diese wiederum in 3-Punkt-Biegeversuchen validiert sowie mit dem Kleben verglichen.}, language = {de} } @misc{SeidlitzMichailovOstetal., author = {Seidlitz, Holger and Michailov, Vesselin and Ost, Lucas and Kuke, Felix and Ambrosio, Marcello and Shapovalov, Oleg and Doynov, Nikolay}, title = {Simulation of Composites' Heating}, series = {Kunststoffe international}, volume = {113}, journal = {Kunststoffe international}, number = {4}, issn = {1862-4243}, pages = {60 -- 64}, abstract = {Modern material-compatible joining methods for fiber-reinforced plastics require the heating of the materials. In order to predict the respective complex temperature fields and curves, the Fraunhofer IAP and the BTU Cottbus-Senftenberg have developed numerical methods, which are able to simulate different radiation sources and process sequences as well.}, language = {en} } @misc{WasilewskiDoynovOssenbrinketal., author = {Wasilewski, Eric and Doynov, Nikolay and Ossenbrink, Ralf and Michailov, Vesselin}, title = {Investigations on the thermal conditions during laser beam welding of high-strength steel 100Cr6}, series = {Advances in Industrial and Manufacturing Engineering}, volume = {6}, journal = {Advances in Industrial and Manufacturing Engineering}, issn = {2666-9129}, doi = {10.1016/j.aime.2023.100118}, abstract = {This study examines the thermal conditions during laser beam welding of 100Cr6 high-strength steel using a TruDisk5000 disc laser with a continuous adjustable power range of 100-5000 W. Two parameter sets, characterized by laser power and welding speeds, were analyzed by thermal-metallurgical FE simulations to determine their impact on the thermal conditions during welding. The results show a significant shift in heat coupling, with conduction transitioning to deep penetration welding. As a result of the high welding speeds and reduced energy input, extremely high heating rates up to 2∙104 K s-1 (set A) respectively 4∙105 K s-1 (set B) occur. Both welds thus concern a range of temperature state values for which conventional Time-Temperature-Austenitization (TTA) diagrams are currently not defined, requiring calibration of the material models through general assumptions. Also, the change in energy input and welding speed causes significantly steep temperature gradients with a slope of approximately 5∙103 K mm-1 and strong drops in the temperature rates, particularly in the heat affected zone. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of 1 s, so that the phase transformation always leads to the formation of martensite. Since the investigated parameters are known to cause a loss of technological strength and conditionally result in cold cracks, these results will be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restraint conditions.}, language = {en} } @misc{Wasilewski, author = {Wasilewski, Eric}, title = {Force Control Strategies to reduce Weld Distortion and Cold Cracking in Laser Beam Welding}, series = {International Conference of Students and Young Scientists: "Modern Materials and Their Processing Technologies"}, journal = {International Conference of Students and Young Scientists: "Modern Materials and Their Processing Technologies"}, editor = {Gluschkowa, Diana Borysiwna and Dosschetschkina, Iryna Wasyliwna and Lalasarowa, Natalija Oleksijiwna}, address = {Charkow, Ukraine}, pages = {6 -- 16}, abstract = {In recent years, lightweight construction and the demand for resource and energy efficiency have increasingly supported the use of high-strength steels. Laser beam welding (LBW) of these materials is used in industrial mass production to efficiently manufacture high-precise components and parts with the highest quality requirements. Avoiding welding-related defects such as weld distortion and cold cracking is critical. Conventional applications currently meet this requirement to a limited extent due to very restricted process tolerances and the use of non-critical materials, which limits the potential of the joining process. Based on FE welding process simulations, concepts have been developed to reduce distortion and cracking through active control of the LBW process. The underlying models consider the weld induced temperature field, microstructure transformations, and residual stresses to calculate distortion. In addition, the local hydrogen concentration is calculated, and the results of the welding process simulation are evaluated using a cold cracking tool that includes material-specific cracking criteria. The ability to simulate distortion and cold cracking behavior opens up the possibility of parameter variation. From the data collected, concepts of active force introduction with dynamic workpiece clamping have been derived that lead to distortion and cold cracking reduction and promote the weldability of high-strength materials.}, language = {en} } @misc{SeidlitzOstAmbrosioetal., author = {Seidlitz, Holger and Ost, Lucas and Ambrosio, Marcello and Kuke, Felix and Michailov, Vesselin and Shapovalov, Oleg and Doynov, Nikolay}, title = {Erw{\"a}rmung von Composites simulieren}, series = {Kunststoffe}, journal = {Kunststoffe}, number = {2}, issn = {0023-5563}, pages = {66 -- 70}, abstract = {Neuartige, werkstoffgerechte F{\"u}geverfahren f{\"u}r Faserkunststoffverbunde setzen die Erw{\"a}rmung der Materialien voraus. Um die damit verbundenen komplexen Temperaturfelder und -verl{\"a}ufe vorherzusagen, haben das Fraunhofer IAP und die BTU Cottbus-Senftenberg numerische Verfahren entwickelt. Mit diesen k{\"o}nnen auch verschiedene Strahlungsquellen und Prozessabl{\"a}ufe simuliert werden.}, language = {de} }