@misc{AbangLiskKrautz, author = {Abang, Roger Atini and Lisk, Alexander and Krautz, Hans Joachim}, title = {Fireside corrosion of superheater materials under oxy-coal firing conditions}, series = {Energy Procedia}, volume = {40}, journal = {Energy Procedia}, issn = {1876-6102}, doi = {10.1016/j.egypro.2013.08.035}, pages = {304 -- 311}, abstract = {The present study investigates the fireside corrosion behavior of selected superheater materials, namely: T24, P92, VM12-SHC, A800HT, and 7RE10 under oxy-coal combustion atmospheres. Data on mass change, scale thickness, metal loss, surface morphology and micro-structural characteristics of corrosion products were obtained. The alloy specimens were analyzed by SEM-EDX, light microscopy and X-Ray diffraction techniques. The results after 2000 hours of exposure at a metal surface temperature of 600 °C indicate that metal wastage increased with decreasing Cr-content under oxy-coal conditions.}, language = {en} } @misc{FindeisenKlattKrautz, author = {Findeisen, Alexander and Klatt, Matthias and Krautz, Hans Joachim}, title = {Examination of the corrosion behaviour of selected power plant materials under various operating conditions}, doi = {http://dx.doi.org/10.1016/j.chemer.2010.05.006}, language = {en} } @misc{AkayBashkatovCoyetal., author = {Akay, {\"O}mer and Bashkatov, Aleksandr and Coy, Emerson and Eckert, Kerstin and Einarsrud, Kristian Etienne and Friedrich, Andreas and Kimmel, Benjamin and Loos, Stefan and Mutschke, Gerd and R{\"o}ntzsch, Lars and Symes, Mark D. and Yang, Xuegeng and Brinkert, Katharina}, title = {Electrolysis in reduced gravitational environments: current research perspectives and future applications}, series = {npj Microgravity}, volume = {8}, journal = {npj Microgravity}, issn = {2373-8065}, doi = {10.1038/s41526-022-00239-y}, abstract = {Electrochemical energy conversion technologies play a crucial role in space missions, for example, in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). They are also vitally important for future long-term space travel for oxygen, fuel and chemical production, where a re-supply of resources from Earth is not possible. Here, we provide an overview of currently existing electrolytic energy conversion technologies for space applications such as proton exchange membrane (PEM) and alkaline electrolyzer systems. We discuss the governing interfacial processes in these devices influenced by reduced gravitation and provide an outlook on future applications of electrolysis systems in, e.g., in-situ resource utilization (ISRU) technologies. A perspective of computational modelling to predict the impact of the reduced gravitational environment on governing electrochemical processes is also discussed and experimental suggestions to better understand efficiency-impacting processes such as gas bubble formation and detachment in reduced gravitational environments are outlined.}, language = {en} } @misc{HoehneLechnerSchreiberetal., author = {H{\"o}hne, Olaf and Lechner, Stefan and Schreiber, Matthias and Krautz, Hans Joachim}, title = {Drying of Lignite in a Pressurized Steam Fluidized Bed - Theory and Experiments}, language = {en} } @misc{ThummarAbangMenzeletal., author = {Thummar, Krunalkumar and Abang, Roger and Menzel, Katharina and Groot, Matheus Theodorus de}, title = {Coupling a Chlor-Alkali Membrane Electrolyzer Cell to a Wind Energy Source: Dynamic Modeling and Simulations}, series = {Energies}, volume = {15}, journal = {Energies}, number = {2}, issn = {1996-1073}, doi = {10.3390/en15020606}, pages = {1 -- 26}, abstract = {Renewable energy sources are becoming a greater component of the electrical mix, while being significantly more volatile than conventional energy sources. As a result, net stability and availability pose significant challenges. Energy-intensive processes, such as chlor-alkali electrolysis, can potentially adjust their consumption to the available power, which is known as demand side management or demand response. In this study, a dynamic model of a chlor-alkali membrane cell is developed to assess the flexible potential of the membrane cell. Several improvements to previously published models were made, making the model more representative of state-of-the-art CA plants. By coupling the model with a wind power profile, the current and potential level over the course of a day was simulated. The simulation results show that the required ramp rates are within the regular operating possibilities of the plant for most of the time and that the electrolyte concentrations in the cell can be kept at the right level by varying inlet flows and concentrations. This means that a CA plant can indeed be flexibly operated in the future energy system.}, language = {en} } @misc{DahashMieckOchsetal., author = {Dahash, Abdulrahman and Mieck, Sebastian and Ochs, Fabian and Krautz, Hans Joachim}, title = {A comparative study of two simulation tools for the technical feasibility in terms of modeling district heating systems: An optimization case study}, series = {Simulation Modelling Practice and Theory}, volume = {91}, journal = {Simulation Modelling Practice and Theory}, issn = {1569-190X}, doi = {10.1016/j.simpat.2018.11.008}, pages = {48 -- 68}, abstract = {District heating dynamic models arise as an alternative approach to in-situ experimental investigations. The main advantage of dynamic modeling and simulation is the possibility to avoid technical and operational risks that might occur during in-situ experimental investigations (e.g. heat demand is not met, damages in the energy systems etc.). Within this study, the authors present two models for an existing district heating system in Cottbus, Germany. One model is developed using the tool EBSILON Professional, while the other one is developed using the Simscape toolbox for physical modeling in Matlab/Simulink. The models were experimentally validated against measured data from the considered district heating system. The results show that the Simscape model has a better fit and better response than the EBSILON model. Yet, some discrepancies were found between the measured and the simulated data and, therefore, the uncertainties of the models were addressed. A comparative study between both tools is presented. The EBSILON models permit only unidirectional flow, whereas the Simscape toolbox permits reverse flow. Nevertheless, the EBSILON model outperforms the Simscape model in computation time. In addition, this study presents an approach for dynamic thermo-hydraulic modeling of district heating networks. This approach is utilized to examine the role of district heating networks as heat storage as an optimization configuration. The numerical results show less start-ups for additional heat sources. Yet, higher heat losses from the network are observed due to the installation of unburied pipelines.}, language = {en} }