@misc{ZaumseilYamamotoSchubertetal., author = {Zaumseil, Peter and Yamamoto, Yuji and Schubert, Markus Andreas and Schr{\"o}der, Thomas and Tillack, Bernd}, title = {Heteroepitaxial Growth of Ge on compliant strained nano-structured Si lines and dots on (001) SOI substrates}, series = {Thin Solid Films}, volume = {557}, journal = {Thin Solid Films}, issn = {0040-6090}, pages = {50 -- 54}, language = {en} } @misc{UhlmannPerezBoschQuesadaFritscheretal., author = {Uhlmann, Max and P{\´e}rez-Bosch Quesada, Emilio and Fritscher, Markus and P{\´e}rez, Eduardo and Schubert, Markus Andreas and Reichenbach, Marc and Ostrovskyy, Philip and Wenger, Christian and Kahmen, Gerhard}, title = {One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0024-6}, issn = {2474-9672}, doi = {10.1109/NEWCAS57931.2023.10198073}, pages = {5}, abstract = {The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications.}, language = {en} }