@misc{GertigMoralesHenkeletal., author = {Gertig, Max and Morales, Carlos and Henkel, Karsten and Flege, Jan Ingo}, title = {In situ X-ray photoelectron spectroscopy study of atomic layer deposited ceria on SiO2: substrate influence on the reaction mechanism during the early stages of growth}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {Atomic layer deposition (ALD) is known to produce amorphous and defect-rich films in a layer-by-layer fashion, which can potentially give rise to unexpected material properties. In particular, ultrathin films (few monolayers) will show the highest complexity, as the substrate-material interaction will play a major role during deposition. Therefore, it is crucial to understand the early stages of growth of the ALD process to control and potentially tailor this interfacial interaction. Applying a surface science approach combined with complementary ex-situ characterization, we have studied by in-situ X-ray photoelectron spectroscopy (XPS) the early stages of ceria (CeOx) growth on SiO2 substrates deposited by thermal-ALD using Ce(thd)4/O3. Interestingly, an initial mixture of Ce3+ and Ce4+ was observed, although only Ce4+ may be expected considering the used precursor and oxidant. This fact, together with a deviation from the ideal layer-by-layer growth and a higher growth rate during the first cycles, indicates a significant influence of the substrate of the ALD reaction mechanism as well as a correlation between morphology and ceria oxidation state.}, language = {en} } @misc{GuttmannRiedelSanchezBarquillaetal., author = {Guttmann, Dominic and Riedel, Bj{\"o}rn and S{\´a}nchez-Barquilla, Raquel and Morales, Carlos and Flege, Jan Ingo}, title = {Oxide formation and oxide/metal interaction in CeOx/Ni(111)}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {Ni/ceria catalysts exhibit a high activity for methane to methanol conversion, making them very promising for applications within a sustainable economy. Possibly, their activity may be strongly enhanced due to the facile exchange between Ce4+ and Ce3+ states, with the latter likely responsible for activating O-H and C-H bonds. Here, we aim to unravel the complex metal-oxide interactions in the inverse CeOx/Ni(111) system under oxidizing and reducing environments. Using low-energy electron diffraction (LEED) we find that the CeOx(111) grown by reactive molecular beam epitaxy preferentially aligns with the main directions of the Ni(111) substrate or is azimuthally rotated by ±10°. By using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), we find that less NiO is formed during deposition of CeOx than when it is held without ceria at the same conditions (O2 partial pressure and temperature). Finally, we observe a complex behavior of the cerium and nickel oxidation states when exposing the system to O2 or H2 atmospheres.}, language = {en} } @misc{ZiaMalekshahiByranvandRudolphetal., author = {Zia, Waqas and Malekshahi Byranvand, Mahdi and Rudolph, Toby and Rai, Monika and Kot, Małgorzata and Das, Chittaranjan and Kedia, Mayank and Zohdi, Mohammadreza and Zuo, Weiwei and Yeddu, Vishal and Saidaminov, Makhsud I. and Flege, Jan Ingo and Kirchartz, Thomas and Saliba, Michael}, title = {MAPbCl3 Light Absorber for Highest Voltage Perovskite Solar Cells}, series = {ACS Energy Letters}, volume = {9}, journal = {ACS Energy Letters}, issn = {2380-8195}, doi = {10.1021/acsenergylett.3c02777}, pages = {1017 -- 1024}, abstract = {Perovskite solar cells (PSCs) excel in achieving high open-circuit voltages (VOC) for narrow bandgaps (∼1.6 eV) but face challenges with wide-bandgap perovskites, like methylammonium lead trichloride (MAPbCl3) with a 3.03 eV bandgap. These materials are transparent in visible absorbing ultraviolet (UV) light. However, achieving uniform film crystallization remains a hurdle. Here, we enhance MAPbCl3 crystallization by manipulating annealing atmospheres (nitrogen, air, and MACl vapor). Excess MACl vapor improves surface coverage, which is crucial for film stability. We demonstrate that the microstructure of the perovskite film, including surface morphology, grain boundaries, and interfaces, can affect the photovoltaic properties. The subsequently obtained VOC of 1.78 V is the highest recorded for single-junction PSCs to the best of our knowledge. Surprisingly, the conventional hole-transport layer spiro-OMeTAD, optimized for narrow bandgaps, sustains such high voltages. Photoluminescence measurements reveal a trap-assisted recombination peak at 1.65 eV, indicating deep traps as significant to voltage loss in MAPbCl3.}, language = {en} } @misc{KaoScheweAkhtaretal., author = {Kao, Ming-Chao and Schewe, Lukas Paul and Akhtar, Arub and Rehm, Jana and Bin Anooz, Saud Bin and Galazka, Zbigniew and Popp, Andreas and Flege, Jan Ingo and Vonk, Vedran and Stierle, Andreas}, title = {Structure and Stability of Al-alloyed β-Ga2O3(100) surfaces}, series = {Verhandlungen der DPG, Berlin 2024}, journal = {Verhandlungen der DPG, Berlin 2024}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {β-Ga2O3 (GaO) holds great promise in high-power applications. GaO is predicted to outperform the leading technologies based on SiC and GaN due to a three times higher calculated critical field strength. It has been identified that alloying with Al results in an almost linear increase in the bandgap between Ga2O3 (4.85eV) and Al2O3 (7eV). A critical issue in the bandgap engineering of GaO is maintaining reasonable electron mobility, which is low for the pure material (150cm2/V/S). This project aims to explore GaO by Al alloying, which allows tunable wide bandgaps for engineering material properties and at the same time maintains excellent crystal quality. PXRD and their Rietveld refinement on several AlGaO crystals indicate a preferential ordering of Al and Ga over octahedral and tetrahedral sites. The results of an SXRD study using synchrotron radiation addressing the surface structure of β-AlxGa2-xO3(100) substrates with x=0-0.25. Our results indicate that the GaO(100) surface is nearly bulk terminated and remains smooth up to 800°C and 10-5mbar of molecular oxygen.}, language = {en} } @misc{NitschRatzkePozarowskaetal., author = {Nitsch, Paul-G. and Ratzke, Markus and Pozarowska, Emilia and Flege, Jan Ingo and Alvarado Chavarin, Carlos and Wenger, Christian and Fischer, Inga Anita}, title = {Deposition of reduced ceria thin films by reactive magnetron sputtering for the development of a resistive gas sensor}, series = {Verhandlungen der DPG, Berlin 2024}, journal = {Verhandlungen der DPG, Berlin 2024}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {The use of cerium oxide for hydrogen sensing is limited by the low electrical conductivity of layers deposited from a ceria target. To increase the electrical conductivity, partially reduced cerium oxide layers were obtained from a metallic cerium target by reactive magnetron sputtering. The proportions of the oxidation states Ce3+, present in reduced species, and Ce4+, present in fully oxidized species, were determined by ex-situ XPS. For electrical characterization, films were deposited on planarized tungsten finger electrodes. IV curves were measured over several days to investigate possible influences of oxygen and humidity on electrical conductivity. The morphological stability of the layers under ambient conditions was investigated by microscopical methods. The XPS results show a significant amount of Ce3+ in the layers. The electrical conductivity of as-grown samples is several orders of magnitude higher than that of samples grown from a ceria target. However, the conductivity decreases over time, indicating an oxidation of the layers. The surface morphology of the samples was found to be changing drastically within days, leading to partial delamination.}, language = {en} } @misc{GawlińskaNęcekKotStarowiczetal., author = {Gawlińska-Nęcek, Katarzyna and Kot, Małgorzata and Starowicz, Zbigniew and Jarzębska, Anna and Panek, Piotr and Flege, Jan Ingo}, title = {Instability of Formamidinium Lead Iodide (FAPI) Deposited on a Copper Oxide Hole Transporting Layer (HTL)}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {21}, publisher = {American Chemical Society (ACS)}, issn = {1944-8244}, doi = {10.1021/acsami.4c03440}, pages = {27936 -- 27943}, abstract = {Copper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition. Using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) spectrophotometry, we find that the entire copper oxide diffuses into and reacts with the FAPI film completely. The reaction products are an inactive yellow δ-FAPI phase, copper iodide (CuI), and an additional new phase of copper formate hydroxide (CH2CuO3) that has not been reported previously in the literature.}, language = {en} } @misc{KapuścikWojcieszakPokoraetal., author = {Kapuścik, Paulina and Wojcieszak, Damian and Pokora, Patrycja and Mańkowska, Ewa and Domaradzki, Jarosław and Mazur, Michał and Mazur, Piotr and Kosto, Yuliia and Morales, Carlos and Kot, Małgorzata and Flege, Jan Ingo}, title = {Low temperature hydrogen sensor with high sensitivity based on CeOx thin film}, series = {Sensors and Actuators B: Chemical}, volume = {417}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier BV}, issn = {0925-4005}, doi = {10.1016/j.snb.2024.136148}, pages = {12}, abstract = {In this work, a 500 nm-thick cerium oxide thin film was prepared by electron beam evaporation. It was found that the deposition of 7 nm thick Pd catalyst was required for obtaining a sensor response to hydrogen. The Pd/CeOx sensing structure has a high response of 5000 towards 25 ppm H2 at a working temperature of 200 °C and exhibits a sensor response of 1.3 at temperatures near ambient. Furthermore, the sensing structure exhibited excellent response/recovery kinetics. The results confirm that the CeOx-based materials are a promising material for the fabrication of room-temperature hydrogen sensors.}, language = {en} } @misc{KodalleMalekshahiByranvandGoudreauetal., author = {Kodalle, Tim and Malekshahi Byranvand, Mahdi and Goudreau, Meredith and Das, Chittaranjan and Roy, Rajarshi and Kot, Małgorzata and Briesenick, Simon and Zohdi, Mohammadreza and Rai, Monika and Tamura, Nobumichi and Flege, Jan Ingo and Hempel, Wolfram and Sutter-Fella, Carolin M. and Saliba, Michael}, title = {An Integrated Deposition and Passivation Strategy for Controlled Crystallization of 2D/3D Halide Perovskite Films}, series = {Advanced Materials}, volume = {36}, journal = {Advanced Materials}, number = {24}, publisher = {Wiley}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.202309154}, pages = {12}, abstract = {This work introduces a simplified deposition procedure for multidimensional (2D/3D) perovskite thin films, integrating a phenethylammonium chloride (PEACl)-treatment into the antisolvent step when forming the 3D perovskite. This simultaneous deposition and passivation strategy reduces the number of synthesis steps while simultaneously stabilizing the halide perovskite film and improving the photovoltaic performance of resulting solar cell devices to 20.8\%. Using a combination of multimodal in situ and additional ex situ characterizations, it is demonstrated that the introduction of PEACl during the perovskite film formation slows down the crystal growth process, which leads to a larger average grain size and narrower grain size distribution, thus reducing carrier recombination at grain boundaries and improving the device's performance and stability. The data suggests that during annealing of the wet film, the PEACl diffuses to the surface of the film, forming hydrophobic (quasi-)2D structures that protect the bulk of the perovskite film from humidity-induced degradation.}, language = {en} } @misc{KostoTschammerMoralesetal., author = {Kosto, Yuliia and Tschammer, Rudi and Morales, Carlos and Henkel, Karsten and Flege, Jan Ingo and Ratzke, Markus and Fischer, Inga Anita and Costina, Ioan and Alvarado Chavarin, Carlos and Wenger, Christian}, title = {Rational design and development of room temperature hydrogen sensors compatible with CMOS technology: a necessary step for the coming renewable hydrogen economy}, series = {Proceedings of iCampus Conference Cottbus 2024}, journal = {Proceedings of iCampus Conference Cottbus 2024}, publisher = {AMA Service GmbH}, address = {Wunstorf}, isbn = {978-3-910600-00-3}, doi = {10.5162/iCCC2024/P21}, pages = {182 -- 185}, abstract = {The transition towards a new, renewable energy system based on green energy vectors, such as hydrogen, requires not only direct energy conversion and storage systems, but also the development of auxiliary components, such as highly sensitive hydrogen gas sensors integrated into mass devices that operate at ambient conditions. Despite the recent advances in nanostructured metal oxide thin films in terms of simple fabrication processes and compatibility with integrated circuits, high sensitivity, and short response/recovery times usually require the use of expensive noble metals or elevated tem-peratures (>250 ºC), which results in high power consumption and poor long-term stability. This article presents the first steps of the work on developing a novel resistive hydrogen gas sensor based on ultrathin cerium oxide films, compatible with complementary metal oxide semiconductor technology and capable of operating at room temperature. Here, we show a multidisciplinary bottom-up approach combining different work areas for the sensor development, such as sensor architecture, sensing mechanism and deposition strategy of the active layer, electrical contact design depending on the desired electrical output, and fast testing under controlled environments.}, language = {en} } @misc{SanchezBarquillaTschammerBussetal., author = {Sanchez-Barquilla, Raquel and Tschammer, Rudi and Buß, Lars and Morales, Carlos and Flege, Jan Ingo}, title = {The relation between substrate, Sm alloy, and surface sensitivity of ceria (111)- and (100)-oriented nano-islands on Ru(0001) and Cu(111)}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {Inverse oxide/metal catalysis allows achieving better catalytic performance than its traditional counterpart. For example, in cerium-based inverse catalyst systems, the Ce3+ states have been shown to be the active sites for methanol synthesis. This suggests that the activity can be enhanced by promoting those through alloying with trivalent, catalytically active rare-earth metals, as, e.g. Sm. We present low-energy and X-ray photoemission electron microscopy (LEEM/XPEEM), investigations that show how epitaxially grown (100)- and (111)-oriented CeO2 islands may be modified and/or alloyed by post-deposited metallic Sm. For the Ce1-xSmxO2-δ/Ru(0001) system, the CeO2 (111)-oriented islands undergo a structural change, concomitant with a partial conversion from Ce4+ to Ce3+. Surprisingly, for Ce1-xSmxO2-δ/Cu(111) the result is found to be face-dependent since only (100)-oriented CeOx islands were reduced whereas the (111)-oriented islands remained unaltered. Both systems have been exposed to reducing (H2) and oxidizing (CO2) conditions, resulting in higher reduction and in a complete recovery of the Ce4+ states, respectively. These unexpected results indicate a complex interaction not only between cerium and the doping element, but also an intricate interplay with the metallic substrate.}, language = {en} }