@misc{UlrichPiwczynskiZaplataetal., author = {Ulrich, Werner and Piwczynski, Marcin and Zaplata, Markus Klemens and Winter, Susanne and Schaaf, Wolfgang and Fischer, Anton}, title = {Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties}, series = {Oecologia}, volume = {175}, journal = {Oecologia}, number = {3}, doi = {10.1007/s00442-014-2954-2}, pages = {985 -- 995}, abstract = {During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.}, language = {en} } @misc{OuldBabaPethHornetal., author = {Ould Baba, Hamoudy and Peth, Stephan and Horn, Rainer and Bens, Oliver and H{\"u}ttl, Reinhard F.}, title = {Quantification of mechanical strength and sliding stability of an artificial water catchment (Chicken Creek)}, series = {Soil \& Tillage Research}, volume = {146}, journal = {Soil \& Tillage Research}, issn = {0167-1987}, doi = {10.1016/j.still.2014.05.013}, pages = {66 -- 78}, abstract = {Natural shear forces due to gravity along inclined terrain surfaces are controlled by the inclination of the terrain, material composition and its mechanical properties, stratification and hydraulic stress states. Both shear forces and shear strength under a given inclination of the terrain surface strongly depend on the interaction between mechanical and hydraulic stresses. These internal conditions as well as the interactions between these various components are fundamentals in all nonplanar regions under arable, forest or grassland management and they dominate also under various geoscientific aims. Generally, soil creep is a slow soil movement downslope under gravity. It can occur even on gentle slopes when the shear forces exceed the shear strength of the soil. Deposited material on slopes is more sensitive to such movements than well-developed soils due to the absence of a pronounced soil structure, site and management dependent hydraulic properties and functions, which results in low soil strength. We applied the described measurements and the modelling approaches to investigate and to analyse the stability of an artificially constructed water catchment (Chicken Creek) in the mining district of Cottbus/Germany, where glacial sand was deposited above a clay layer with an inclination of about 3.5\%. At the lower part of the catchment, an impermeable barrier (claywall)was positioned transversally to the main slope. Mechanical and hydraulic parameters of the soil layers were determined on soil samples taken from the field site. The measured values were inserted as input parameters for the finite element model (Plaxis 2D) to simulate soil movements and their effect on the stability of the catchment. The obtained results showed that the kind of construction negatively affected the physical low soil strength (low precompression stress) although the bulk density was very high (1.7-1.9 g/cm3 for the sandy material). Hydraulic conductivity revealed a significant anisotropy with higher hydraulic conductivity values in the horizontal direction. Furthermore, finite element results showed that the design of the newly formed landscape remains weak concerning mass movements too. The high water table in the sandy material in conjunction with low soil strength enhances the downslope movement and increases the shear stress near the clay wall at the lower end of the slope, which finally results in soil creep processes. These results also proof that such geotechnical and modelling approach is also suitable to validate or to predict mass movements and the internal processes responsible for these internal mass erosion.}, language = {en} } @misc{MantovaniVesteFreese, author = {Mantovani, Dario and Veste, Maik and Freese, Dirk}, title = {Black locust (Robina pseudoacacia L.) ecopysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency}, series = {New Zealand Journal of Forestry Science}, volume = {44}, journal = {New Zealand Journal of Forestry Science}, number = {1}, doi = {10.1186/s40490-014-0029-0}, pages = {11}, abstract = {Background: Successful plantation efforts growing Robinia pseudoacacia L. (black locust) in the drier regions of Hungary and East Germany (Brandenburg), have demonstrated the potential of black locust as an alternative tree species for short-rotation biomass energy plantations. Methods: The response of black locust to water limitation was investigated in a lysimeter experiment. Plants were grown under three different soil moisture regimes, with values set at 35\%, 70\%, and 100\% of the soil water availability, namely WA35, WA70, and WA100. Their morphological adaptation and productivity response to water constraint were assessed together with their water-use efficiency. Furthermore, the ecophysiological adaptation at the leaf level was assessed in terms of net photosynthesis and leaf transpiration. Results: During the growing season, plants in the WA35, WA70, and WA100 treatments transpired 239, 386, and 589 litres of water respectively. The plants subjected to the WA35 and WA70 treatments developed smaller leaves compared with the plants subjected to the WA100 treatment (66\% and 36\% respectively), which contributed to the total leaf area reduction from 8.03 m2 (WA100) to 3.25 m2 (WA35). The total above-ground biomass produced in the WA35 (646 g) and WA70 (675 g) treatments reached only 46\% and 48\% of the biomass yield obtained in the WA100 (1415 g). The water-use efficiency across all treatments was 2.31 g L-1. At vapour pressure deficit (VPD) values <1.4 kPa trees growing under the WA35 soil moisture regime showed a stomatal down-regulation of transpiration to 5.3 mmol m-2 s-1, whereas the trees growing under the WA100 regime did not regulate their stomatal conductance and transpiration was 11.7 mmol m-2 s-1, even at VPD values >2 kPa. Conclusions: Black locust plants can adapt to prolonged drought conditions by reducing water loss through both reduced transpiration and leaf size. However, under well-watered conditions it does not regulate its transpiration, and therefore it cannot be considered a water-saving tree species.}, language = {en} } @misc{TsonkovaBoehmQuinkensteinetal., author = {Tsonkova, Penka and B{\"o}hm, Christian and Quinkenstein, Ansgar and Freese, Dirk}, title = {Application of partial order ranking to identify enhancement potantials for the provision of selected ecosystem services by different land use strategies}, series = {Agricultural Systems}, volume = {135}, journal = {Agricultural Systems}, issn = {0308-521X}, doi = {10.1016/j.agsy.2015.01.002}, pages = {112 -- 121}, abstract = {Conventional agricultural practices have often been associated with negative externalities, such as land degradation, pollution of soil and water resources, loss of biodiversity, and decreased provision of ecosystem services (ES). In response to these negative effects, the number of indicator-based attempts to assess ES provided by land use systems has increased. However, decisions regarding the importance of the different ES are usually made subjectively. Following an objective approach through the use of a partial order ranking method, this study aimed to assess several non-provisioning ES supplied by alley cropping system (ACS) in comparison with conventional agriculture (CA). The main objective of the study was to verify the applicability of partial order ranking to an ecologically-based assessment, focusing on soil, water, and biodiversity indicators. Results from 40 hypothetical scenarios representing various site conditions of agricultural fields in Germany were calculated using the Ecosystem Services Assessment Tool for Agroforestry (ESAT-A), a toolbox designed to assess selected ES of ACS following an empirical approach. The results were ranked using partial order and were visualized by a Hasse diagram. The findings depict partial order ranking as a promising technique to support decision making in order to find priority scenarios and indicators where the provision of ES can be enhanced by establishing ACS. The minimal scenarios under CA identified with simultaneously low values of all indicators were perceived as target scenarios for establishing ACS. The values of the indicators for the current land use system need to be taken into account in order to avoid scenarios where high tradeoff was suggested. Additionally, this approach can be extended and utilized at the field level to aid farmer decisions on which land use strategy is the most suitable alternative to increase the provision of ES.}, language = {en} } @misc{MedinskiFreeseBoehm, author = {Medinski, Tanya V. and Freese, Dirk and B{\"o}hm, Christian}, title = {Soil CO2 flux in an alley-cropping system composed of black locust and poplar trees, Germany}, series = {Agroforestry Systems}, volume = {89}, journal = {Agroforestry Systems}, number = {2}, issn = {1572-9680}, doi = {10.1007/s10457-014-9764-8}, pages = {267 -- 277}, abstract = {Understanding of soil carbon dynamics after establishment of alley-cropping systems is crucial for mitigation of greenhouse CO2 gas. This study investigates soil CO2 fluxes in an alley-cropping system composed of tree strips of black locust (Robinia pseudoacacia L.) and poplar (Populus nigra 9 P. maximowiczii, Max 1) trees and adjacent to them crop strips (Lupinus/Solarigol). Soil CO2 flux was measured monthly over a period from March to November 2012, using a LI-COR LI-8100A automated device. Concurrently with CO2 flux measurements, soil and air temperature, soil moisture, microbial C and hot water-extractable C were determined for the soils nearby soil collars. Root biomass was determined to a depth of 15 cm. In all sampling areas, soil CO2 flux increased from May to July, showing a significant positive correlation with air and soil temperature, which can be a reflection of increase in photosynthesis, and therefore supply of carbohydrates from leaves to rhizosphere, over the warm summer months. A positive correlation between CO2 flux and soil moisture over the warm period indicates an enhancing role of soil moisture on microbial mineralization and root respiration. Average CO2 flux values observed over March-November period did not differ significantly between sampling areas, showing 2.5, 3.2, and 2.9 lmol m-2 s-1 values for black locust, poplar and crops, respectively. Significantly higher CO2 flux values over the summer period in trees could be attributed to the higher photosynthetic activity and higher root density compared to crops.}, language = {en} } @misc{SutLohmannRepmannRaab, author = {Sut-Lohmann, Magdalena and Repmann, Frank and Raab, Thomas}, title = {Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site}, series = {Journal of Environmental Science and Health, Part A}, volume = {50}, journal = {Journal of Environmental Science and Health, Part A}, number = {3}, issn = {1532-4117}, doi = {10.1080/10934529.2015.981116}, pages = {282 -- 291}, abstract = {The soil in the vicinities of former Manufactured Gas Plant (MGP) sites is commonly contaminated with iron-cyanide complexes (ferric ferrocyanide). The phenomenon of cyanide mobility in soil, according to the literature, is mainly governed by the dissolution and precipitation of ferric ferrocyanide, which is only slightly soluble (<1 mg L!'1) under acidic conditions. In this paper, retention properties of the sandy loam soil and the potential vertical movement of the solid iron-cyanide complexes, co-existing with the dissolution, sorption and precipitation reactions were investigated. Preliminary research conducted on a former MGP site implied colloidal transport of ferric ferricyanide from the initial deposition in the wastes layer towards the sandy loam material (secondary accumulation), which possibly retarded the mobility of cyanide (CN). A series of batch and column experiments were applied in order to investigate the retardation of iron-cyanide complexes by the sandy loam soil. Batch experiments revealed that in circumneutral pH conditions sandy loam material decreases the potassium ferro- and ferricyanide concentration. In column experiments a minor reduction in CN concentration was observed prior to addition of iron sulfide (FeS) layer, which induced the formation of the Prussian blue colloids in circumneutral pH conditions. Precipitated solid iron-cyanide complexes were mechanically filtered by the coherent structure of the investigated soil. Additionally, the reduction of the CN concentration of the percolation solutions by the sandy loam soil was presumably induced due to the formation of potassium manganese iron-cyanide (K2Mn[Fe(CN)6]).}, language = {en} } @misc{BoldtBurischNaethSchneideretal., author = {Boldt-Burisch, Katja and Naeth, M. Anne and Schneider, Bernd Uwe and H{\"u}ttl, Reinhard F.}, title = {Linkage between root systems of three pioneer plant species and soil nitrogen during early reclamation of a mine site in Lusatia, Germany}, series = {Restoration Ecology}, volume = {23}, journal = {Restoration Ecology}, number = {4}, issn = {1526-100X}, doi = {10.1111/rec.12190}, pages = {357 -- 365}, abstract = {In 2005, a 7-ha artificial watershed (Chicken Creek) was built on a post mined landscape in Lusatia, Germany from sandy substrates of Pleistocene origin, commonly used in reclamation. The watershed was developed to investigate the initial phase of soil and ecosystem development under natural conditions. At this early stage, mineral nitrogen in young sandy soils is primarily limited and nitrogen fixing legumes become key components of natural succession. Local abundant pioneering legumes Lotus corniculatus and Trifolium arvense and one pioneer grass species Calamagrostis epigeios were investigated 5 years after watershed construction. In this study, we investigated the influence of spatial root and nodule distribution of these species on soil nitrogen accumulation. Soil, including roots, was sampled from field monoliths covered with the aforementioned plant species. Root systems of both legumes were mainly restricted to the upper 20 cm of soil, whereas roots of C. epigeios also developed strongly at greater depths. A positive relationship was found, with higher plant densities associated with higher root densities which were associated with higher nodule densities for legumes and which were all associated with significantly higher soil nitrogen content relative to non-vegetated areas. This research provides rare information on the role root systems of pioneer legumes play in soil nitrogen input in the early stage of soil and ecosystem development during revegetation by natural succession.}, language = {en} } @misc{FischerGypserSubbotinaetal., author = {Fischer, Thomas and Gypser, Stella and Subbotina, Maria and Veste, Maik}, title = {Synergic hydraulic and nutritional feedback mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining site}, series = {Journal of Hydrology and Hydromechanics}, volume = {62}, journal = {Journal of Hydrology and Hydromechanics}, number = {4}, issn = {0042-790X}, doi = {10.2478/johh-2014-0038}, pages = {293 -- 302}, abstract = {In a recultivation area located in Brandenburg, Germany, five types of biocrusts (initial BSC1, developed BSC2 and BSC3, mosses, lichens) and non-crusted mineral substrate were sampled on tertiary sand deposited in 1985- 1986 to investigate hydrologic interactions between crust patches. Crust biomass was lowest in the non-crusted substrate, increased to the initial BSC1 and peaked in the developed BSC2, BSC3, the lichens and the mosses. Water infiltration was highest on the substrate, and decreased to BSC2, BSC1 and BSC3. Non-metric multidimensional scaling revealed that the lichens and BSC3 were associated with water soluble nutrients and with pyrite weathering products, thus representing a high nutrient low hydraulic feedback mode. The mosses and BSC2 represented a low nutrient high hydraulic feedback mode. These feedback mechanisms were considered as synergic, consisting of run-off generating (low hydraulic) and run-on receiving (high hydraulic) BSC patches. Three scenarios for BSC succession were proposed. (1) Initial BSCs sealed the surface until they reached a successional stage (represented by BSC1) from which the development into either of the feedback modes was triggered, (2) initial heterogeneities of the mineral substrate controlled the development of the feedback mode, and (3) complex interactions between lichens and mosses occurred at later stages of system development.}, language = {en} } @misc{DimitrovaRepmannRaabetal., author = {Dimitrova, Tsvetelina and Repmann, Frank and Raab, Thomas and Freese, Dirk}, title = {Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment}, series = {Ecotoxicology}, volume = {24}, journal = {Ecotoxicology}, number = {3}, issn = {1573-3017}, doi = {10.1007/s10646-014-1398-0}, pages = {510}, abstract = {Phytoremediation of sites contaminated with iron cyanides can be performed using poplar and willow trees. Poplar and willow trees were grown in potting substrate spiked with ferrocyanide concentrations of up to 2,000 mg kg-1 for 4 and 8 weeks respectively. Soil solution and leaf tissue of different age were sampled for total cyanide analysis every week. Chlorophyll content in the leaves was determined to quantify cyanide toxicity. Results showed that cyanide in the soil solution of spiked soils differed between treatments and on weekly basis and ranged from 0.5 to 1,200 mg l-1. The maximum cyanide content in willow and poplar leaves was 518 mg kg-1 fresh weight (FW) and 148 mg kg-1 FW respectively. Cyanide accumulated in the leaves increased linearly with increasing cyanide concentration in the soil solution. On the long term, significantly more cyanide was accumulated in old leaf tissue than in young tissue. Chlorophyll content in poplar decreased linearly with increasing cyanide in the soil solution and in leaf tissue, and over time. The inhibitory concentration (IC50) value for poplars after 4 weeks of exposure was 173 mg l-1 and for willow after 8 weeks of exposure—768 mg l-1. Results show that willows tolerate much more cyanide and over a longer period than poplars, making them very appropriate for remediating sites highly contaminated with iron cyanides.}, language = {en} } @misc{MantovaniVesteBoldtBurischetal., author = {Mantovani, Dario and Veste, Maik and Boldt-Burisch, Katja and Fritsch, Simone and Koning, Laurie Anne and Freese, Dirk}, title = {Carbon allocation, nodulation, and biological nitrogen fixation of black locust (Robinia pseudoacacia L.) under soil water limitation}, series = {Annals of Forest Research}, volume = {58}, journal = {Annals of Forest Research}, number = {2}, issn = {2065-2445}, doi = {10.15287/afr.2015.420}, pages = {259 -- 274}, abstract = {The pioneer tree black locust (Robinia pseudoacacia L.) is a drought-resistant tree and, in symbiosis with Rhizobium, able to fix dinitrogen from the atmosphere. It is, therefore, an interesting species for marginal lands where soil amelioration is sought in addition to economic gain. However, the interaction between soil water availability, carbon allocation and nitrogen fixation is important for a successful establishment of trees on marginal lands and has not yet been investigated for black locust. Twoyear-old trees were grown under various soil water conditions and drought cycles. The stable isotopic composition of C (δ 13C) and N (δ 15N) of the leaves was used to identify i) the effective drought condition of the treatments and ii) the portion N accrued from the atmosphere by the biological nitrogen fixation. Drought-stressed plants significantly reduced their total aboveground biomass production, which was linearly linked to tree transpiration. The shoot:root ratio values changed from 2.2 for the drought-stressed to 4.3 for the well-watered plants. Our investigation shows that drought stress increases the nodule biomass of black locust in order to maintain biological nitrogen fixation and to counteract the lower soil nitrogen availability. The biological nitrogen fixation of drought-stressed trees could be maintained at relatively higher values compared to the well-watered trees. The average leaf nitrogen content varied between 2.8\% and 3.0\% and was not influenced by the drought stress. Carbon fixation, carbon allocation, and biological nitrogen fixation are to some extent balanced at low irrigation and allow Robinia to cope with long-term water constraints. The combination of black locust's ecophysiological and morphological plasticity make it interesting as a biomass source for bioenergy and timber production, even in nutrient-limited and drought-affected areas of Europe.}, language = {en} } @misc{KanzlerBoehmFreese, author = {Kanzler, Michael and B{\"o}hm, Christian and Freese, Dirk}, title = {Impact of P fertilisation on the growth performance of black locust (Robinia pseudoacacia L.) in a lignite post-mining area in Germany}, series = {Annals of Forest Research}, volume = {58}, journal = {Annals of Forest Research}, number = {1}, doi = {10.15287/afr.2015.303}, pages = {39 -- 54}, abstract = {Due to its ability to grow on marginal sites black locust (Robinia pseudoacacia L.) has been widely planted as a short rotation coppice (SRC) system that produce a renewable biomass feedstock in several post-mining areas of East Germany. However, as most of these sites are still in an initial stage of reclamation with low humus and nutrient contents, phosphorous can play a significant role as a plant limiting factor, because legumes require more P than other plants for their development. In April 2011, two experiments were conducted to evaluate the influence of higher rates and different applications of phosphorus fertiliser on the nutrition, survival, and biomass production of two different-aged black locust SRC plantations on the post lignite-mining site "Welzow-S{\"u}d", situated in NE Germany. Treatments were applied as triple superphosphate (30, 60 and 120 kg P ha-1) and PK fertiliser (60 kg P ha-1) through broadcasting or banding on recently harvested or planted trees, respectively. Soil, leaf and woody biomass data were analysed utilising the Mann-Whitney U test and the Spearman correlation coefficient (rS). Following two growing seasons, it was observed that the total dry weight yields of the black locust seedlings were increased strongly by up to 8 times when compared to the control group, particularly when TSP was applied through banding. P fertilisation, however, did not affect the biomass yield of six-year-old black locust trees, but P concentration in leaves among treatments of both sites was still significantly increased and sufficient from a quantity upwards of 60 kg P ha-1. Taken together, a comparably moderate amount of P fertiliser (60 kg ha-1) had a strong impact on P uptake and growth performance in the examined black locust seedlings, which reveals a high potential to improve the current fertilisation practices for SRC black locust plantations grown on our research site.}, language = {en} } @misc{GypserVesteFischeretal., author = {Gypser, Stella and Veste, Maik and Fischer, Thomas and Lange, Philipp}, title = {Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany}, series = {Journal of hydrology and hydromechanics}, volume = {64}, journal = {Journal of hydrology and hydromechanics}, number = {1}, doi = {10.1515/johh-2016-0009}, pages = {1 -- 11}, abstract = {Investigations were done on two former open-cast lignite mining sites under reclamation, an artificial sand dune in Welzow S{\"u}d, and a forest plantation in Schlabendorf S{\"u}d (Brandenburg, Germany). The aim was to associate the topsoil hydrological characteristics of green algae dominated as well as moss and soil lichen dominated biological soil crusts during crustal succession with their water retention and the repellency index on sandy soils under temperate cli-mate and different reliefs. The investigation of the repellency index showed on the one hand an increase due to the cross-linking of sand parti-cles by green algae which resulted in clogging of pores. On the other hand, the occurrence of moss plants led to a de-crease of the repellency index due to absorption caused by bryophytes. The determination of the water retention curves showed an increase of the water holding capacity, especially in conjunction with the growth of green algae layer. The pore-related van Genuchten parameter indicate a clay-like behaviour of the developed soil crusts. Because of the inho-mogeneous distribution of lichens and mosses as well as the varying thickness of green algae layers, the water retention differed between the study sites and between samples of similar developmental stages. However, similar tendencies of water retention and water repellency related to the soil crust formation were observed. Biological soil crusts should be considered after disturbances in the context of reclamation measures, because the ini-tial development of green algae biocrusts lead to an increasing repellency index, while the occurrence of mosses and a gain in organic matter enhance the water holding capacity. Thus, the succession of biocrusts and their small-scale succes-sion promote the development of soil and ecosystem.}, language = {en} } @misc{KwakChangNaethetal., author = {Kwak, Jin-Hyeob and Chang, Scott X. and Naeth, M. Anne and Schaaf, Wolfgang}, title = {Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, issn = {1932-6203}, doi = {10.1371/journal.pone.0143857}, pages = {0143857}, abstract = {Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining.}, language = {en} } @misc{MantovaniVesteGypseretal., author = {Mantovani, Dario and Veste, Maik and Gypser, Stella and Halke, Christian and Koning, Laurie Anne and Freese, Dirk and Lebzien, Stefan}, title = {Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients}, series = {Journal of Hydrology and Hydromechanics}, volume = {62}, journal = {Journal of Hydrology and Hydromechanics}, number = {4}, issn = {0042-790X}, doi = {10.2478/johh-2014-0028}, pages = {316 -- 323}, abstract = {Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis), which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100\%) and nitrogen fertilization (0, 50, 100, 150 kg N ha-1). Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed) and 141 l (well-watered) per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.}, language = {en} } @misc{KoningVesteFreeseetal., author = {Koning, Laurie Anne and Veste, Maik and Freese, Dirk and Lebzien, Stefan}, title = {Effects of nitrogen and phsphate fertilization on leaf nutrient content, photosythesis, and growth of the novel bioenergy crop Fallopia schalinensis vc. 'Igniscum Candy'}, series = {Journal of Applied Botany and Food Quality}, volume = {88}, journal = {Journal of Applied Botany and Food Quality}, issn = {1439-040X}, doi = {10.5073/JABFQ.2015.088.005}, pages = {22 -- 28}, abstract = {The aim of the study was to determine the effects of nitrogen and phosphate fertilization on the growth performance of the novel bioenergy crop Fallopia sachalinensis cv. 'Igniscum Candy' (Polygonaceae). In a controlled pot experiment various nitrogen (0, 50, 150, 300 kg N ha-1) and phosphate (20, 40, 80 kg P ha-1) fertilizer amounts were applied to measure the effect on the biomass, plant height, leaf area, and leaf nutrient (N and P) content. Furthermore, the ecophysiological processes of chlorophyll content, chlorophyll fluorescence, and gas exchange were measured. The application of nitrogen correlated positively with biomass production, while phosphate fertilization did not show a significant effect on plant growth or ecophysiological parameters. The leaf nitrogen contents were significantly correlated with the nitrogen applications, while the leaf phosphate contents did not show a correlation with the P fertilizations, but increased with the leaf nitrogen contents. A significant linear correlation between N-Tester chlorophyll meter values and chlorophyll contents as well as with leaf nitrogen contents could be determined. Under the influence of the nitrogen fertilization, net photosynthesis increased from 3.7 to 6.6 μmol m-2 s-1. The results of this experiment demonstrated that nitrogen fertilization has an overall positive correlation with leaf nitrogen content, photosynthesis, and growth of the bioenergy crop Fallopia sachalinensis var. Igniscum Candy.}, language = {en} } @misc{VesteTodtBreckle, author = {Veste, Maik and Todt, Henning and Breckle, Siegmar-W.}, title = {Influence of halophytic hosts on their parasites - the case of Plicosepalus acaciae}, series = {AOB Plants}, volume = {7}, journal = {AOB Plants}, issn = {2041-2851}, doi = {10.1093/aobpla/plu084}, pages = {plu084}, abstract = {Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host-parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na+ and Cl2. Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host-parasite associations are a model systemfor the investigation of halophytes under different salt stress conditions.}, language = {en} } @misc{MantovaniVesteFreese, author = {Mantovani, Dario and Veste, Maik and Freese, Dirk}, title = {Effects of Drought Frequency on Growth Performance and Transpiration of Young Black Locust (Robinia pseudoacacia L.)}, series = {International Journal of Forestry Research}, journal = {International Journal of Forestry Research}, issn = {1687-9376}, doi = {10.1155/2014/821891}, pages = {11}, abstract = {Black locust (Robinia pseudoacacia L.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L-1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.}, language = {en} } @misc{Veste, author = {Veste, Maik}, title = {Bioenergie aus W{\"u}stenpflanzen}, series = {Naturwissenschaftliche Rundschau}, volume = {67}, journal = {Naturwissenschaftliche Rundschau}, number = {2}, issn = {0028-1050}, pages = {80 -- 81}, language = {de} } @misc{GypserHerppichFischeretal., author = {Gypser, Stella and Herppich, Werner B. and Fischer, Thomas and Lange, Philipp and Veste, Maik}, title = {Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany}, series = {Flora}, volume = {Vol. 220}, journal = {Flora}, issn = {0367-2530}, doi = {10.1016/j.flora.2016.02.012}, pages = {103 -- 116}, abstract = {Following surface disturbance, quaternary sands are the basic substrate for soil development in the Lusatian reclamation area. These substrates mostly contain few organic matter and, hence, are nutrient poor. Accumulation of soil carbon is an important factor for ecosystem development, where biological soil crusts initially influence soil processes and promote ecosystem succession. The compositional structures of biological soil crusts at various developmental stages and their photosynthetic properties were investigated on two former open-cast lignite sites, currently under reclamation, an artificial sand dune in Welzow S{\"u}d, and a forest plantation in Schlabendorf S{\"u}d (Brandenburg, Germany). As development of biological soil crusts progressed, their contents of organic carbon and total chlorophyll increased. The ratio of these parameters, however, varied with the relative contribution of lichens and mosses in particular. Also maximum photochemical efficiency, net photosynthesis and respiration increased with crustal development. An additional evaluation of NDVI and chlorophyll fluorescence images showed that especially moss-dominated biocrusts had higher photosynthetic capacity compared to green algae-dominated biocrusts or soil lichens, so the photosynthetic capacity showed to be highly species-specific. The ratio of gross photosynthesis to respiration indicated a higher ecological efficiency of biocrusts dominated by green algae than of lichen-dominated biocrusts. The occurrence of soil lichens reduced net CO2 fixation and increased CO2 release due to the enhanced mycobiontic respiration. During crustal succession, the rise of photosynthesis-related parameters is not necessarily linear as a result of the highly heterogenic distribution of the different crustal organisms between biocrusts of similar developmental stages as well as between those growing at the two study sites. Therefore, the evaluation of relevant ecophysiological parameters highlighted that not all biocrust-forming organisms similarly contribute to the ecophysiological behavior of biological soil crusts. Nevertheless, the occurrence of the biological soil crusts promoted soil formation and accumulation of soil carbon in initial soils.}, language = {en} } @misc{MantovaniVesteBoehmetal., author = {Mantovani, Dario and Veste, Maik and B{\"o}hm, Christian and Vignudelli, Marco and Freese, Dirk}, title = {Spatial and temporal variation of drought impact on black locust (Robinia pseudoacacia L.) water status and growth}, series = {iForest Biogeosciences and Forestry}, volume = {8}, journal = {iForest Biogeosciences and Forestry}, issn = {1971-7458}, doi = {10.3832/ifor1299-008}, pages = {743 -- 747}, abstract = {Stimulated by the rising demand for bioenergy, forestry practices for energy production are of increasing importance worldwide. Black locust (Robinia pseudoacacia L.) is a suitable tree species for biomass production in shortrotation plantations in East Germany, especially on marginal land where insufficient water and nutrients are a limiting factor for tree growth. Our study aims to clarify the spatial and temporal variability of the black locust growth through the analysis of the plant water status, and to evaluate the effect of adverse edaphic conditions on growth performances, amplified by periods of summer drought. The study was carried out at two sites presenting comparable climatic but different edaphic conditions: (i) fertile agricultural soil; and (ii) heterogeneous unstructured soil from a reclaimed post-mining area. During the vegetation period, the growth rate decreased in both sites following the plant water status in terms of pre-dawn leaf water potential. Particularly in the post-mining area, due to the adverse edaphic conditions, below the critical pre-dawn water potential value of -0.5 MPa, the stem growth was drastically reduced during a period of summer drought. However, the trees could cope with the extreme soil and weather conditions in the post-mining site without perishing.}, language = {en} }