@misc{DasKotHellmannetal., author = {Das, Chittaranjan and Kot, Małgorzata and Hellmann, Tim and Wittich, Carolin and Mankel, Eric and Zimmermann, Iwan and Schmeißer, Dieter and Nazeeruddin, Mohammad Khaja and Jaegermann, Wolfram}, title = {Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells}, series = {Cell Reports Physical Science}, volume = {1}, journal = {Cell Reports Physical Science}, number = {7}, issn = {2666-3864}, doi = {10.1016/j.xcrp.2020.100112}, pages = {18}, abstract = {Iodide migration causes degradation of the perovskite solar cells. Here,we observe the direct migration of iodide into the hole-transport layer in a device. We demonstrate that ultrathin room temperature atomic layer-deposited Al2O3 on the perovskite surface very effectively hinders the migration. The perovskite-Al2O3 interface enables charge transfer across the Al2O3 layer in the solar cells, without causing any drastic changes in the properties of the perovskite absorber. Furthermore, it helps to preserve the initial properties of the perovskite film during exposure to light and air under real operating conditions, and thus, improves the stability of the solar cells. The ultrathin Al2O3 layer deposited at room temperature significantly increases the lifetime of the perovskite solar cells, and we hope this may be a step toward the mass production of stable devices.}, language = {en} }