@misc{MeerZiegler, author = {Meer, Klaus and Ziegler, Martin}, title = {An explicit solution to Post's problem over the reals}, series = {Journal of Complexity}, volume = {24}, journal = {Journal of Complexity}, number = {1}, issn = {0885-064x}, pages = {3 -- 15}, language = {en} } @inproceedings{MeerZiegler, author = {Meer, Klaus and Ziegler, Martin}, title = {Real Computational Universality: The word problem for a class of groups with infinite presentation}, series = {Mathematical foundations of computer science 2007, 32nd international symposium, MFCS 2007, Česk{\´y} Krumlov, Czech Republic, August 26-31, 2007, proceedings}, booktitle = {Mathematical foundations of computer science 2007, 32nd international symposium, MFCS 2007, Česk{\´y} Krumlov, Czech Republic, August 26-31, 2007, proceedings}, editor = {Kučera, Luděk}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-74455-9}, pages = {726 -- 737}, language = {en} } @inproceedings{MeerZiegler, author = {Meer, Klaus and Ziegler, Martin}, title = {Uncomputability below the real halting problem}, series = {Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30 - July 5, 2006, proceedings.}, booktitle = {Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30 - July 5, 2006, proceedings.}, editor = {Beckmann, Arnold}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-35466-6}, pages = {368 -- 377}, language = {en} } @inproceedings{MeerZiegler, author = {Meer, Klaus and Ziegler, Martin}, title = {An explicit solution to Post's problem over the reals}, series = {Fundamentals of computation theory, 15th international symposium, FCT 2005, L{\"u}beck, Germany, August 17 - 20, 2005}, booktitle = {Fundamentals of computation theory, 15th international symposium, FCT 2005, L{\"u}beck, Germany, August 17 - 20, 2005}, editor = {Liskiewicz, Maciej}, publisher = {Springer}, address = {Berlin}, isbn = {3-540-28193-2}, pages = {456 -- 467}, language = {en} } @misc{MeerZiegler, author = {Meer, Klaus and Ziegler, Martin}, title = {Real Computational Universality: The word problem for a class of groups with infinite presentation}, language = {en} } @misc{DirkmannHansenZiegleretal., author = {Dirkmann, Sven and Hansen, Mirko and Ziegler, Martin and Kohlstedt, Hermann and Mussenbrock, Thomas}, title = {The Role of Ion Transport Phenomena in Memristive Double Barrier Devices}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/srep35686}, pages = {35686}, language = {en} } @misc{DirkmannZieglerHansenetal., author = {Dirkmann, Sven and Ziegler, Martin and Hansen, Mirko and Kohlstedt, Hermann and Trieschmann, Jan and Mussenbrock, Thomas}, title = {Kinetic Simulation of Filament Growth Dynamics in Memristive Electrochemical Metallization Devices}, series = {Journal of Applied Physics}, volume = {118}, journal = {Journal of Applied Physics}, number = {21}, issn = {1089-7550}, doi = {10.1063/1.4936107}, pages = {214501}, language = {en} } @misc{HansenZieglerKolbergetal., author = {Hansen, Mirko and Ziegler, Martin and Kolberg, Lucas and Soni, Rohit and Dirkmann, Sven and Mussenbrock, Thomas and Kohlstedt, Hermann}, title = {A Double Barrier Memristive Device}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/srep13753}, pages = {13753}, language = {en} } @misc{ZahariHansenMussenbrocketal., author = {Zahari, Finn and Hansen, Mirko and Mussenbrock, Thomas and Ziegler, Martin and Kohlstedt, Hermann}, title = {Pattern Recognition with TiOx-based Memristive Devices}, series = {AIMS Materials Science}, volume = {2}, journal = {AIMS Materials Science}, number = {3}, issn = {2372-0484}, doi = {10.3934/matersci.2015.3.203}, pages = {203 -- 216}, language = {en} } @misc{StrobelHansenDirkmannetal., author = {Strobel, Julian and Hansen, Mirko and Dirkmann, Sven and Neelisetty, Krishna Kanth and Ziegler, Martin and Haberfehlner, Georg and Popescu, Radian and Kothleitner, Gerald and Chakravadhanula, Venkata Sai Kiran and K{\"u}bel, Christian and Kohlstedt, Hermann and Mussenbrock, Thomas and Kienle, Lorenz}, title = {In Depth Nano Spectroscopic Analysis on Homogeneously Switching Double Barrier Memristive Devices}, series = {Journal of Applied Physics}, volume = {121}, journal = {Journal of Applied Physics}, number = {24}, issn = {1089-7550}, doi = {10.1063/1.4990145}, pages = {245307}, language = {en} } @misc{SolanDirkmannHansenetal., author = {Solan, Enver and Dirkmann, Sven and Hansen, Mirko and Schroeder, Dietmar and Kohlstedt, Hermann and Ziegler, Martin and Mussenbrock, Thomas and Ochs, Karlheinz}, title = {An Enhanced Lumped Element Electrical Model of the Double Barrier Memristive Device}, series = {Journal of physics : D, Applied physics}, volume = {50}, journal = {Journal of physics : D, Applied physics}, number = {19}, doi = {10.1088/1361-6463/aa69ae}, pages = {10}, language = {en} } @misc{ZahariSchlichtingStrobeletal., author = {Zahari, Finn and Schlichting, Felix and Strobel, Julian and Dirkmann, Sven and Cipo, Julia and Gauter, Sven and Trieschmann, Jan and Marquardt, Richard and Haberfehlner, Georg and Kothleitner, Gerald and Kienle, Lorenz and Mussenbrock, Thomas and Ziegler, Martin and Kersten, Holger and Kohlstedt, Hermann}, title = {Correlation between sputter deposition parameters and I-V characteristics in double-barrier memristive devices}, series = {Journal of Vacuum Science \& Technology}, volume = {37}, journal = {Journal of Vacuum Science \& Technology}, number = {6}, issn = {1520-8559}, doi = {10.1116/1.5119984}, pages = {061203}, language = {en} } @misc{NikiruyPerezBaronietal., author = {Nikiruy, Kristina and Perez, Eduardo and Baroni, Andrea and Reddy, Keerthi Dorai Swamy and Pechmann, Stefan and Wenger, Christian and Ziegler, Martin}, title = {Blooming and pruning: learning from mistakes with memristive synapses}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {1}, issn = {2045-2322}, doi = {10.1038/s41598-024-57660-4}, abstract = {AbstractBlooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome. Here, this idea is implemented in a neuromorphic circuit scheme using CMOS integrated HfO2-based memristive devices. The implemented two-layer neural network learns in a self-organized manner without positive reinforcement and exploits the inherent variability of the memristive devices. This approach provides hardware, local, and energy-efficient learning. A combined experimental and simulation-based parameter study is presented to find the relevant system and device parameters leading to a compact and robust memristive neuromorphic circuit that can handle association tasks.}, language = {en} } @misc{ZahariPerezMahadevaiahetal., author = {Zahari, Finn and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Kohlstedt, Hermann and Wenger, Christian and Ziegler, Martin}, title = {Analogue pattern recognition with stochastic switching binary CMOS‑integrated memristive devices}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, issn = {2045-2322}, doi = {10.1038/s41598-020-71334-x}, pages = {15}, abstract = {Biological neural networks outperform todays computer technology in terms of power consumption and computing speed when associative tasks, like pattern recognition, are to be solved. The analogue and massive parallel in-memory computing in biology differs strongly with conventional transistor electronics using the von Neumann architecture. Therefore, novel bio-inspired computing architectures are recently highly investigated in the area of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are used to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology in neuromorphic systems. However, dealing with the inherent stochasticity of the resistive switching effect can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail and their use in a stochastic artificial neural network (StochANN) to solve the MINST pattern recognition task is examined. A mixed-signal implementation with hardware synapses and software neurons as well as numerical simulations show the proposed concept of stochastic computing is able to handle analogue data with binary memory cells.}, language = {en} }