@inproceedings{KotWojciechowskiSnaithetal., author = {Kot, Małgorzata and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Characterization of the perovskite solar cells containing atomic layer deposited Al2O3 buffer layer}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 147}, abstract = {Hybrid perovskites have potential to overcome performance limits of the current solar cell technologies and achieve low cost and high versatility. Nonetheless, they are prone to degradation in presence of moisture within a couple of hours or days. In this work, we use the atomic layer deposition (ALD) of Al2O3 on the CH3NH3PbI3 perovskite at room temperature in order to verify if this thin ALD layer may protect the perovskite film against moisture degradation and to check the impact of the Al2O3 on the solar to power conversion efficiency (PCE). Depth profiling X-ray photoelectron spectroscopy study shows that the ALD precursors are chemically active only at the perovskite surface and the film bulk is not affected. The perovskite film coated with Al2O3 layer has enhanced moisture stability. Solar cells with a fresh-made CH3NH3PbI3 perovskite film have shown PCE of 15.4\%, while the one with 50 days aged perovskite only 6.1\%. However, when the aged perovskite is covered with RT-ALD-Al2O3 the PCE value is clearly enhanced.[1] [1] M. Kot et al., Room temperature ALD impact on efficiency, stability and surface properties in perovskite solar cells, ChemSusChem,acctepted.}, language = {en} } @misc{KotWojciechowskiSnaithetal., author = {Kot, Małgorzata and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Evidence of Nitrogen Contribution to the Electronic Structure of the CH₃NH₃PbI₃ Perovskite}, series = {Chemistry - A European Journal}, volume = {24}, journal = {Chemistry - A European Journal}, number = {14}, issn = {0947-6539}, doi = {10.1002/chem.201705144}, pages = {3539 -- 3544}, abstract = {Despite fast development of hybrid perovskite solar cells, there are many fundamental questions related to the perovskite film which remain open. For example, there are contradicting theoretical reports on the role of the or-ganic methylammonium cation (CH₃NH₃+)in the methylam-monium lead triiodide (CH₃NH₃PbI₃)perovskite film. From one side it is reported that the organic cation does not contribute to electronic structure of the CH₃NH₃PbI₃ film. From the other side, valence band maximum fluctuations, dependent on the CH₃NH₃+ rotation, have been theoretically predicted. The resonant X-ray photoelectron spectroscopy results reported here show experimental evidence of nitrogen contribution to the CH₃NH₃PbI₃ electronic structure. Moreover,the observed strong resonances of nitrogen with the I 5s and the Pb 5d-6s levels indicate that the CH₃NH₃PbI₃ valence band is extended up to ~18 eV below the Fermi energy, and therefore one should also consider these shallow core levels while modeling its electronic structure.}, language = {en} } @misc{KotDasHenkeletal., author = {Kot, Małgorzata and Das, Chittaranjan and Henkel, Karsten and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Room temperature atomic layer deposited Al₂O₃ on CH₃NH₃PbI₃ characterized by synchrotron-based X-ray photoelectron spectroscopy}, series = {Nuclear Instruments and Methods in Physics Research B}, volume = {411}, journal = {Nuclear Instruments and Methods in Physics Research B}, issn = {0168-583X}, doi = {10.1016/j.nimb.2017.01.082}, pages = {49 -- 52}, abstract = {An ultrathin Al₂O₃ film deposited on methylammonium lead triiodide (CH₃NH₃PbI₃) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85°C degrades the CH₃NH₃PbI₃ perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al₂O₃ by atomic layer deposition on the perovskite at room temperature, however, besides pure Al₂O₃ some OH groups are found and the creation of lead and iodine oxides at the Al₂O₃/CH₃NH₃PbI₃ interface takes place.}, language = {en} } @inproceedings{SowinskaDasWojciechowskietal., author = {Sowinska, Małgorzata and Das, Chittaranjan and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {XPS study of the ALD growth of Al₂O₃ on the CH₃NH₃PbI₃}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, pages = {S. 206}, abstract = {Organic-inorganic lead halide perovskites have emerged as very attractive absorber materials for the fabrication of low cost and high efficiency solar cells, but a delicate nature of these films is one of the main challenges for a successful commercialization. Typically, when exposed to air or moisture, perovskite films degrade within a couple of hours or days. Moreover, the methylammonium lead triiodide (CH₃NH₃PbI₃) perovskite cannot sustain a prolonged annealing at temperatures around 85∘C. In this work, we are investigating stability (upon air and thermal exposure) of a CH₃NH₃PbI₃ perovskite film coated with a thin layer of Al₂O₃ deposited by atomic layer deposition (ALD). In particular, the chemical and electronic changes occurred at the Al₂O₃/CH₃NH₃PbI₃ interface during the first 50 ALD cycles were monitored ex-situ by high-resolution and surface-sensitive synchrotron-based X-ray photoelectron spectroscopy (SR-XPS). The advantage of the ALD as a deposition method is that it can produce extremely dense layers with a very precise thickness control at room temperature. Detailed SR-XPS data analysis and a stability test of the perovskite film with alumina will be presented.}, language = {en} } @misc{SowinskaDasWojciechowskietal., author = {Sowinska, Małgorzata and Das, Chittaranjan and Wojciechowski, Konrad and Rouissi, Zied and Snaith, Henry J. and Schmeißer, Dieter}, title = {Atomic layer deposition of Al2O3 on CH3NH3PbI3 for enhancement of perovskite solar cells stability}, series = {Synchrotron Radiation in Natural Science : Bulletin of the Polish Synchrotron Radiation Society}, volume = {15}, journal = {Synchrotron Radiation in Natural Science : Bulletin of the Polish Synchrotron Radiation Society}, number = {1-2}, issn = {1644-7190}, pages = {S. 33}, language = {en} } @inproceedings{SowinskaDasWojciechowskietal., author = {Sowinska, Małgorzata and Das, Chittaranjan and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Spectroscopic investigation of the nitrogen role in organic-inorganic perovskite films}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, pages = {S. 150}, abstract = {Over the past few years, a wide range of device architectures employing organic-inorganic metal halide perovskite absorbers has been reported, with efficiencies exceeding 20\%. Despite the tremendous progress, a number of key issues must be resolved before the wide-spread com- mercialization will be possible. Some of the primary challenges include lead toxicity, long-term stability, and fast degradation upon exposure to humid atmosphere. Recent computational and experimental studies suggest that hybrid metal-halide perovskites act as an ionic-electronic conductor. The study of vacancy-mediated migration of I-, Pb2+ and CH3NH3- ions and their relative activation energies suggests that migration of halide vacancies, to and from the interfaces in the solar cell during its operation, is the main conduction mechanism. In this work, we are presenting high resolution synchrotron-based spectroscopic study, which indicates that the contribution of nitrogen into the conduction mechanism of methyl ammonium lead iodide-based (CH3NH3PbI3) perovskite films should not be neglected. The N1s core level and resonant X-ray photoelectron spectroscopy at the N1s-egde of the CH3NH3PbI3 films are discussed in detail.}, language = {en} } @misc{KotDasWangetal., author = {Kot, Małgorzata and Das, Chittaranjan and Wang, Zhiping and Henkel, Karsten and Rouissi, Zied and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Room-Temperature Atomic Layer Deposition of Al₂O₃: Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells}, series = {ChemSusChem}, volume = {9}, journal = {ChemSusChem}, number = {24}, issn = {1864-5631}, doi = {10.1002/cssc.201601186}, pages = {3401 -- 3406}, abstract = {In this work, solar cells with a freshly made CH₃NH₃PbI₃ perovskite film showed a power conversion efficiency (PCE) of 15.4 \% whereas the one with 50 days aged perovskite film only 6.1 \%. However, when the aged perovskite was covered with a layer of Al₂O₃ deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al2O3-covered perovskite films showed enhanced ambient air stability.}, language = {en} }