@misc{WeberLiLovasetal., author = {Weber, Kathrin and Li, T. and L{\o}v{\aa}s, Terese and Perlman, Cathleen and Seidel, Lars and Mauß, Fabian}, title = {Stochastic reactor modeling of biomass pyrolysis and gasification}, series = {Journal of analytical and applied pyrolysis}, volume = {124}, journal = {Journal of analytical and applied pyrolysis}, issn = {0165-2370}, doi = {10.1016/j.jaap.2017.01.003}, pages = {592 -- 601}, abstract = {Abstract In this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD simulations, the description of state variables and mixing processes is based on a probability density function, making this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both surface and gas phase reactions. A Monte Carlo algorithm with operator splitting …}, language = {en} } @misc{ManzeschkeWeberFangerauetal., author = {Manzeschke, Arne and Weber, Karsten and Fangerau, Heiner and Rother, Elisabeth and Quack, Friederike and Dengler, Kathrin and Bittner, Uta}, title = {Letter to the Editor: An ethical evaluation of telemedicine applications must consider four major aspects - A comment on Kidholm et al.}, series = {International Journal of Technology Assessment in Health Care}, volume = {29}, journal = {International Journal of Technology Assessment in Health Care}, number = {1}, issn = {0266-4623}, doi = {10.1017/S0266462312000773}, pages = {110 -- 111}, language = {en} } @misc{WeberBittnerManzeschkeetal., author = {Weber, Karsten and Bittner, Uta and Manzeschke, Arne and Rother, Elisabeth and Quack, Friederike and Dengler, Kathrin and Fangerau, Heiner}, title = {Taking patient privacy and autonomy more seriously: Why an Orwellian account is not sufficient}, series = {American Journal of Bioethics}, volume = {12}, journal = {American Journal of Bioethics}, number = {9}, issn = {1526-5161}, doi = {10.1080/15265161.2012.699147}, pages = {51 -- 53}, language = {en} } @misc{PoradaBaderBerdugoetal., author = {Porada, Philipp and Bader, Maaike Y. and Berdugo, Monica B. and Colesie, Claudia and Ellis, Christopher J. and Giordani, Paolo and Herzschuh, Ulrike and Ma, Yunyao and Launiainen, Samuli and Nascimbene, Juri and Petersen, Imke and Raggio Qu{\´i}lez, Jos{\´e} and Rodr{\´i}guez-Caballero, Emilio and Rousk, Kathrin and Sancho, Leopoldo G. and Scheidegger, Christoph and Seitz, Steffen and Van Stan, John T. and Veste, Maik and Weber, Bettina and Weston, David J.}, title = {A research agenda for non-vascular photoautotrophs under climate change}, series = {New Phytologist}, volume = {237 (2023)}, journal = {New Phytologist}, number = {5}, issn = {0028-646X}, doi = {10.1111/nph.18631}, pages = {1495 -- 1504}, abstract = {Non-vascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but it is highly uncertain to what extent this will affect the associated ecosystem functions and services. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and worldwide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on (1) potential for acclimation (2) response to elevated CO2 (3) role of the microbiome and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multi-method laboratory and field experiments and eco-physiological modelling, for which sustained scientific collaboration on NVP research will be essential.}, language = {en} }