@misc{PerezBoschQuesadaRizziGuptaetal., author = {Perez-Bosch Quesada, Emilio and Rizzi, Tommaso and Gupta, Aditya and Mahadevaiah, Mamathamba Kalishettyhalli and Schubert, Andreas and Pechmann, Stefan and Jia, Ruolan and Uhlmann, Max and Hagelauer, Amelie and Wenger, Christian and Perez, Eduardo}, title = {Multi-Level Programming on Radiation-Hard 1T1R Memristive Devices for In-Memory Computing}, series = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, journal = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0240-0}, doi = {10.1109/CDE58627.2023.10339525}, pages = {4}, abstract = {This work presents a quasi-static electrical characterization of 1-transistor-1-resistor memristive structures designed following hardness-by-design techniques integrated in the CMOS fabrication process to assure multi-level capabilities in harsh radiation environments. Modulating the gate voltage of the enclosed layout transistor connected in series with the memristive device, it was possible to achieve excellent switching capabilities from a single high resistance state to a total of eight different low resistance states (more than 3 bits). Thus, the fabricated devices are suitable for their integration in larger in-memory computing systems and in multi-level memory applications. Index Terms—radiation-hard, hardness-by-design, memristive devices, Enclosed Layout Transistor, in-memory computing}, language = {en} } @misc{UhlmannPerezBoschQuesadaFritscheretal., author = {Uhlmann, Max and P{\´e}rez-Bosch Quesada, Emilio and Fritscher, Markus and P{\´e}rez, Eduardo and Schubert, Markus Andreas and Reichenbach, Marc and Ostrovskyy, Philip and Wenger, Christian and Kahmen, Gerhard}, title = {One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing}, series = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, journal = {21st IEEE Interregional NEWCAS Conference (NEWCAS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0024-6}, issn = {2474-9672}, doi = {10.1109/NEWCAS57931.2023.10198073}, pages = {5}, abstract = {The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications.}, language = {en} }