@misc{MaywaldHeinrichKuehhornetal., author = {Maywald, Thomas and Heinrich, Christoph Rocky and K{\"u}hhorn, Arnold and Schrape, Sven and Backhaus, Thomas}, title = {Prediction of Geometrically Induced Localization Effects Using a Subset of Nominal System Modes}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition June 17-21, 2019 Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition June 17-21, 2019 Phoenix, Arizona, USA}, isbn = {978-0-7918-5869-1}, doi = {10.1115/GT2019-90884}, pages = {9}, abstract = {It is widely known that the vibration characteristics of blade integrated discs can dramatically change in the presence of manufacturing tolerances and wear. In this context, an increasing number of publications discuss the influence of the geometrical variability of blades on phenomena like frequency splitting and mode localization. This contribution is investigating the validity of a stiffness modified reduced order model for predicting the modal parameters of a geometrically mistuned compressor stage. In detail, the natural frequencies and mode shapes, as well as the corresponding mistuning patterns, are experimentally determined for an exemplary rotor. Furthermore, a blue light fringe projector is used to identify the geometrical differences between the actual rotor and the nominal blisk design. With the help of these digitization results, a realistic finite element model of the whole compressor stage is generated. Beyond that, a reduced order model is implemented based on the nominal design intention. Finally, the numerical predictions of the geometrically updated finite element model and the stiffness modified reduced order model are compared to the vibration measurement results. The investigation is completed by pointing out the benefits and limitations of the SNM-approach in the context of geometrically induced mistuning effects.}, language = {en} } @misc{MaywaldBackhausSchrapeetal., author = {Maywald, Thomas and Backhaus, Thomas and Schrape, Sven and K{\"u}hhorn, Arnold}, title = {Geometric Model Update of Blisks and its Experimental Validation for a Wide Frequency Range}, series = {ASME Turbo Expo 2017, GT2017-63446, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, journal = {ASME Turbo Expo 2017, GT2017-63446, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5092-3}, doi = {10.1115/GT2017-63446}, pages = {9}, abstract = {The contribution discusses a model update procedure and its experimental validation in the context of blisk mistuning. Object of investigation is an industrial test blisk of an axial compressor which is milled from solid using a state of the art 5-axis milling machine. First, the blisk geometry is digitized by a blue light fringe projector. Digitization is largely automated using an industrial robot cell in order to guarantee high repeatability of the measurement results. Additionally, frequency mistuning patterns are identified based on vibration measurements. Here, the system excitation is realized by a modal impact hammer. The blade response is detected using a laser scanning vibrometer. Furthermore, all blades except the currently excited one are detuned with additional masses. Applying these masses allows to identify a blade dominated natural frequency for each blade and every mode of interest. Finally, these blade dominated frequencies are summarized to mode specific mistuning patterns. The key part of the contribution presents a model update approach which is focused on small geometric deviations between real engine parts and idealized simulation models. Within this update procedure the nodal coordinates of an initially tuned finite element blisk model were modified in order to match the geometry of the real part measured by blue light fringe projection. All essential pre- and post-processing steps of the mesh morphing procedure are described and illustrated. It could be proven that locally remaining geometric deviations between updated finite element model and the optical measurement results are below 5 μm. For the purpose of validation blade dominated natural frequencies of the updated finite element blisk model are calculated for each sector up to a frequency of 17 kHz. Finally, the numerically predicted mistuning patterns are compared against the experimentally identified counterparts. At this point a very good agreement between experimentally identified and numerically predicted mistuning patterns can be proven across several mode families. Even mistuning patterns of higher modes at about 17 kHz are well predicted by the geometrically mistuned finite element model. Within the last section of the paper, possible uncertainties of the presented model update procedure are analyzed. As a part of the study the digitization of the investigated blisk has been repeated for ten times. These measurement results serve as input for the model update procedure described before. In the context of this investigation ten independent geometrical mistuned simulation models are created and the corresponding mistuning patterns are calculated. Copyright © 2017 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{BackhausMaywaldSchrapeetal., author = {Backhaus, Thomas and Maywald, Thomas and Schrape, Sven and Voigt, Matthias and Mailach, Roland}, title = {A Parametrization Describing Blisk Airfoil Variations Referring to Modal Analysis}, series = {ASME Turbo Expo 2017, GT2017-64243, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, journal = {ASME Turbo Expo 2017, GT2017-64243, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5092-3}, doi = {10.1115/GT2017-64243}, abstract = {This paper will present a way to capture the geometric blade by blade variations of a milled from solid blisk as well as the manufacturing scatter. Within this idea it is an essential task to digitize the relevant airfoil surface as good as possible to create a valid surface mesh as the base of the upcoming evaluation tasks. Since those huge surface meshes are not easy to handle and are even worse in getting quantified and easy interpretable results, it should be aimed for an easily accessible way of presenting the geometric variation. The presented idea uses a section based airfoil parametrization that is based on an extended NACA-airfoil structure to ensure the capturing of all occurring characteristic geometry variations. This Paper will show how this adapted parametrization method is suitable to outline all the geometric blade by blade variation and even more, refer those airfoil design parameters to modal analysis results such as the natural frequencies of the main mode shapes. This way, the dependencies between the modal and airfoil parameters will be proven.}, language = {en} } @misc{BeirowMaywaldFigaschewskyetal., author = {Beirow, Bernd and Maywald, Thomas and Figaschewsky, Felix and K{\"u}hhorn, Arnold and Heinrich, Christoph Rocky and Giersch, Thomas}, title = {Simplified Determination of Aerodynamic Damping for Bladed Rotors, Part 1: Experimental Validation at Rest}, series = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4984-2}, doi = {10.1115/GT2016-56535}, abstract = {Considering both a radial turbine rotor of a turbocharger and an axial compressor test blisk at rest, aerodynamic damping characteristics are experimentally and numerically analyzed. Linear dependencies of modal damping ratios on the ambient pressure or the acoustic impedance, respectively, could be shown within experiments carried out inside a pressure chamber. The impact of the ambient air clearly dominates the modal damping ratios compared to the minor contribution of the structure. Assuming that acoustic emission can be regarded as main source of aerodynamic damping a simplified approach for its determination is introduced which only depends on natural frequency, mode shape and acoustic impedance. It is shown that a satisfying match between experiment and computation is achieved for those cases which are dedicated to sufficiently small ratios between wave lengths of acoustic emissions and blade distances.}, language = {en} } @inproceedings{MaywaldKuehhornSchrape, author = {Maywald, Thomas and K{\"u}hhorn, Arnold and Schrape, Sven}, title = {Experimental Validation of a Model Update Procedure Focusing on Small Geometric Deviations}, series = {ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, June 5-10, 2016}, booktitle = {ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, June 5-10, 2016}, abstract = {This contribution presents a model update procedure and its experimental validation using the example of a blade integrated disk rotor. This so called blisk is discretized using the finite element method. It is well known that numerical blisk models based on the ideal tuned design show major differences in structural dynamic behavior compared to the real rotor. In this context a modification of the mechanical simulation model should lead to a better accordance of numerical results and the real blisk characteristics. The described model update procedure utilizes data of an optical 3D measurement system. Using this data enables to identify geometric deviations between the ideal design and its real counterpart. Within the update procedure the originally tuned finite element mesh is modified in order to match the measured geometry of the real part. This is done by defining several morph regions. The outer surface nodes of these morph regions change their position along the surface normal vector until they meet the defined deviation constraint. Based on eigenvalue calculations employing free boundary conditions the sensitivity of structural dynamic behavior is shown with respect to small geometric changes. Finally computed eigenvalues and eigenvectors of the updated simulation model are compared with vibration measurement data. A laser Doppler vibrometer is used to detect the vibration responses of the impact excited structure. All experiments are carried out under technical vacuum conditions in order to minimize ambient air damping. In the context of an experimental modal analysis this low damping condition helps to identify more natural frequencies of the investigated structure. This leads to a much more efficient model validation.}, language = {en} } @phdthesis{Maywald, author = {Maywald, Thomas}, title = {Modellierung und Simulation integral gefertigter Verdichterlaufr{\"a}der auf der Grundlage einer dreidimensionalen Oberfl{\"a}chenvermessung}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-95908-135-1}, pages = {XVI, 158}, abstract = {Integral gefertigte Verdichterlaufr{\"a}der repr{\"a}sentieren eine fortschrittliche Baugruppe moderner Turbomaschinen. Eine dauerfeste Auslegung derartiger Komponenten kann sich mitunter als schwierig erweisen. Ursache hierf{\"u}r ist, dass bereits kleinste Variationen der Bauteilkontur beziehungsweise der Materialeigenschaften eine drastische Ver{\"a}nderung des mechanischen Verhaltens bewirken k{\"o}nnen. Aus diesem Grund besteht ein {\"u}bergeordnetes Interesse diese sogenannte Laufradverstimmung bereits im Auslegungsprozess einer Maschine zu ber{\"u}cksichtigen. Die vorliegende Arbeit unterst{\"u}tzt dieses Anliegen, indem M{\"o}glichkeiten dargestellt werden, die fertigungsbedingten Variationen der Bauteilkontur messtechnisch zu erfassen und diese im Modellierungsprozess mit einzubeziehen. Ziel ist es dar{\"u}ber hinaus nachzuweisen, dass eine Modellanpassung auf Grundlage der realen Bauteilgeometrie die Aussagekraft der Simulation deutlich erh{\"o}hen kann. S{\"a}mtliche zum Einsatz kommenden Verfahren zur Modellierung und Modellanpassung sowie die ben{\"o}tigten experimentellen Aufbauten werden ausf{\"u}hrlich beschrieben. Auf Grundlage der generierten Messdaten, Modelle und Simulationsergebnisse gelingt es schließlich Gestaltungshinweise f{\"u}r eine effiziente Modellierung des betrachteten Laufradbeispiels zu formulieren. Im Anschluss stellt der Abgleich berechneter und experimentell identifizierter Eigenfrequenzen und Eigenformen die Validit{\"a}t der verwendeten Modelle unter Beweis. Weiterhin wird gezeigt, inwiefern sich der unvermeidbare zuf{\"a}llige Messfehler im Rahmen der optischen Geometrievermessung auf die numerischen Berechnungsergebnisse auswirken kann. Den Abschluss bildet eine Gegen{\"u}berstellung zweier verschiedener Modellanpassungsmethoden. Der Vergleich st{\"u}tzt sich auf die Ergebnisse eines geometrisch modifizierten beziehungsweise eines steifigkeitsproportional angepassten Modells. Die Arbeit kommt zu dem Schluss, dass eine Modellanpassung auf der Grundlage einer dreidimensionalen Oberfl{\"a}chenvermessung die Aussagekraft einer Simulation erheblich verbessern kann. Dabei erm{\"o}glichte es die vorgestellte Vorgehensweise, das verstimmungsbedingt modifizierte mechanische Eigenschaftsprofil eines realen Verdichterlaufrades richtig wiederzugeben.}, language = {de} } @inproceedings{BeirowMaywaldKuehhorn, author = {Beirow, Bernd and Maywald, Thomas and K{\"u}hhorn, Arnold}, title = {Mistuning and Damping Analysis of a Radial Turbine Blisk in Varying Ambient Conditions}, series = {ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics D{\"u}sseldorf, Germany, June 16-20, 2014, Paper GT2014-25521}, booktitle = {ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics D{\"u}sseldorf, Germany, June 16-20, 2014, Paper GT2014-25521}, publisher = {ASME}, isbn = {978-0-7918-4577-6}, doi = {10.1115/GT2014-25521}, abstract = {A mistuned radial turbine impeller is analyzed with respect to the impact of varying ambient pressures and temperatures as well on frequency response functions and modal damping ratios. Beginning at room conditions, a finite element model of an impeller wheel at rest is updated based on experimentally determined mistuning in terms of blade dominated frequencies. The following numerical forced response analyses yield a maximum blade displacement amplification of 67\% compared to the tuned reference. In addition, modal damping ratios are determined in dependence on the ambient pressure ranging from technical vacuum at 1 mbar up to 6000 mbar in a pressure chamber. Shaker excitation and laser Doppler vibrometry response measurement is employed in this context. A linear dependence of modal damping ratios on ambient pressure and a dominating damping contribution of the surrounding air even for higher modes could be proved. Moreover, the experimental determination of frequency response functions (FRF) at technical vacuum yields a better separation of resonance peaks compared to room conditions at 1013 mbar and hence, this data allows for more accurate model-updates in principle. It is proved that numerical models updated regarding mistuning at room conditions are well suited to predict the forced response at arbitrary pressures if measured modal damping ratios at these pressures are considered. Finally, within analyzing the effect of increasing structural temperatures with the surrounding air at 1013 mbar included slightly decreasing resonance frequencies but strongly increasing FRF-amplitudes are determined. Copyright © 2014 by ASME}, language = {en} } @inproceedings{MaywaldBeirowHeinrichetal., author = {Maywald, Thomas and Beirow, Bernd and Heinrich, Christoph Rocky and K{\"u}hhorn, Arnold}, title = {Vacuum Spin Test Series of a Turbine Impeller with Focus on Mistuning and Damping by Comparing Tip Timing and Strain Gauge Results}, series = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7B: Structures and Dynamics Montreal, Quebec, Canada, June 15-19, 2015}, booktitle = {ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7B: Structures and Dynamics Montreal, Quebec, Canada, June 15-19, 2015}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5677-2}, doi = {10.1115/GT2015-42649}, abstract = {This paper describes preparation, execution and evaluation of a comprehensive bladed disk spin test series. At the example of an turbine impeller the effects of rotation and temperature are analyzed with special focus on mistuning and damping. The forced response is measured synchronously via 13 identical positioned strain gauges on each blade as well as via blade tip-timing. Subsequently it is possible to compare the results of both systems. During the test series rotational speed varies in the range from 10.000 up to 19.000 RPM. Simultaneously, the wheel is heated up to 820 K by an oven. A number of pre-selected natural frequencies, damping ratios and operating deflection shapes are evaluated and compared with respect to different rotational speeds and impeller temperatures. Copyright © 2015 by ASME}, language = {en} } @inproceedings{Maywald, author = {Maywald, Thomas}, title = {Grundlegende Charakterisierung des Eigenschwingverhaltens eines zyklisch symmetrischen Mehrmassenschwingers mittels analytischer Methoden}, series = {Deutscher Luft- und Raumfahrtkongress, Tagungsband Bremen 2011, Manuskripte}, booktitle = {Deutscher Luft- und Raumfahrtkongress, Tagungsband Bremen 2011, Manuskripte}, publisher = {DGLR}, address = {Bonn}, pages = {809 -- 816}, language = {de} } @misc{MaywaldBeirowKuehhorn, author = {Maywald, Thomas and Beirow, Bernd and K{\"u}hhorn, Arnold}, title = {Mistuning und D{\"a}mpfung von Radialturbinenr{\"a}dern}, series = {MTZ - Motortechnische Zeitschrift}, volume = {76}, journal = {MTZ - Motortechnische Zeitschrift}, number = {06}, issn = {2192-8843}, doi = {10.1007/s35146-015-0043-7}, pages = {68 -- 75}, abstract = {Moderne Verbrennungskraftmaschinen m{\"u}ssen ein stetig wachsendes Anforderungsprofil in Bezug auf Wirtschaftlichkeit, Leistung und Umweltfreundlichkeit erf{\"u}llen. In diesem Zusammenhang hat die Turboaufladung von Verbrennungsmotoren an Bedeutung gewonnen. Bei Turboladern kleiner und mittlerer Baugr{\"o}ße, deren Turbinen einen Durchmesser zwischen 30 und 250 mm aufweisen, kommen vornehmlich gegossene Laufr{\"a}der zum Einsatz. Am Institut f{\"u}r Verkehrstechnik der Brandenburgischen Technischen Universit{\"a}t Cottbus-Senftenberg wurde im Rahmen eines FVV-Forschungsvorhabens der Einfluss charakteristischer Betriebsgr{\"o}ßen eines Turboladers auf das strukturdynamische Verhalten solcher Radialturbinenr{\"a}der untersucht.}, language = {de} }