@misc{VesteLittmannKunnekeetal., author = {Veste, Maik and Littmann, Thomas and Kunneke, Anton and Du Toit, Ben and Seifert, Thomas}, title = {Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa}, series = {Plant, Soil and Environment}, volume = {66}, journal = {Plant, Soil and Environment}, number = {3}, issn = {1214-1178}, doi = {10.17221/616/2019-PSE}, pages = {119 -- 127}, abstract = {Under the conditions of climate change in South Africa, ecological and technical measures are needed to reduce the water consumption of irrigated crops. Windbreak hedges are long-rated systems in agriculture that significantly reduce wind speed. Their possibilities to reduce evapotranspiration and water demand are being investigated at a vineyard in the Western Cape Province, South Africa. Detailed measurements of meteorological parameters relevant for the computation of reference and crop-specific evapotranspiration following the FAO 56 approaches within a vineyard in the Western Cape Province of South Africa have shown the beneficial effect of an existing hedgerow consisting of 6 m high poplars (Populus simonii (Carri{\`e}re) Wesm.). With reference to a control station in the open field, the mean wind speed in a position about 18 m from the hedgerow at canopy level (2 m) was reduced by 27.6\% over the entire year and by 39.2\% over the summer growing season. This effect leads to a parallel reduction of reference evapotranspiration of 15.5\% during the whole year and of 18.4\% over the growing season. When applying empirical crop-specific Kc values for well-irrigated grapes, the reduction of evapotranspiration is 18.8\% over the summer growth period. The introduced tree shelterbelts are a suitable eco-engineering approach to reduce water consumption and to enhance water saving in vineyards.}, language = {en} }