@misc{HanschkeKuehhornSchrapeetal., author = {Hanschke, Benjamin and K{\"u}hhorn, Arnold and Schrape, Sven and Giersch, Thomas}, title = {Consequences of Borescope Blending Repairs on Modern HPC Blisk Aeroelasticity}, series = {Journal of Turbomachinery}, volume = {141}, journal = {Journal of Turbomachinery}, number = {2}, issn = {1528-8900}, doi = {10.1115/1.4041672}, pages = {7}, abstract = {Objective of this paper is to analyze the consequences of borescope blending repairs on the aeroelastic behavior of a modern high pressure compressor (HPC) blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, a generic blending of a rotor blade is modeled. Steady-state flow parameters like total pressure ratio, polytropic efficiency, and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilizing the aerodynamic influence coefficient (AIC) approach for both geometries. Results are confirmed by single passage flutter (SPF) simulations for specific interblade phase angles (IBPA) of interest. Finally, a unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. The frequency content as well as the forcing amplitudes is obtained from Fourier transformation of the forcing signal. As a result of the present analysis, the change of the blade vibration amplitude is computed.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven}, title = {Analysis of mistuned forced response in an axial high-pressure compressor rig with focus on Tyler-Sofrin modes}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {123}, issn = {2059-6464}, doi = {10.1017/aer.2018.163}, pages = {356 -- 377}, abstract = {This paper aims at contributing to a better understanding of the effect of Tyler-Sofrin Modes (TSMs) on forced vibration responses by analysing a 4.5-stage research axial compressor rig. The first part starts with a brief review of the involved physical mechanisms and necessary prerequisites for the generation of TSMs in multistage engines. This review is supported by unsteady CFD simulations of a quasi 2D section of the studied engine. It is shown that the amplitude increasing effect due to mistuning can be further amplified by the presence of TSMs. Furthermore, the sensitivity with respect to the structural coupling of the blades and the damping as well as the shape of the expected envelope is analysed. The second part deals with the Rotor 2 blisk of the research compressor rig. The resonance of a higher blade mode with the engine order of the upstream stator is studied in two different flow conditions realised by different variable stator vane (VSV) schedules which allows to separate the influence of TSMs from the impact of mistuning. A subset of nominal system modes representation of the rotor is used to describe its mistuned vibration behaviour, and unsteady CFD simulations are used to characterise the present strength of the TSMs in the particular operating conditions. Measured maximum amplitude vs blade pattern and frequency response functions are compared against the predictions of the aeromechanical models in order to assess the strength of the TSMs as well as its influence on vibration levels.}, language = {en} } @misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and H{\"o}nisch, Peter and Giersch, Thomas and Schrape, Sven}, title = {Model update and validation of a mistuned high-pressure compressor blisk}, series = {The Aeronautical Journal}, volume = {123}, journal = {The Aeronautical Journal}, number = {1260}, issn = {2059-6464}, doi = {10.1017/aer.2018.149}, pages = {230 -- 247}, abstract = {In order to prepare an advanced 4-stage high-pressure compressor rig test campaign, details regarding both accomplishment and analysis of preliminary experiments are provided in this paper. The superior objective of the research project is to contribute to a reliable but simultaneously less conservative design of future high pressure blade integrated disks (blisk). It is planned to achieve trend-setting advances based on a close combination of both numerical and experimental analyses. The analyses are focused on the second rotor of this research compressor, which is the only one being manufactured as blisk. The comprehensive test program is addressing both surge and forced response analyses e.g. caused by low engine order excitation. Among others the interaction of aeroelastics and blade mistuning is demanding attention in this regard. That is why structural models are needed, allowing for an accurate forced response prediction close to reality. Furthermore, these models are required to support the assessment of blade tip timing (BTT) data gathered in the rig tests and strain gauge (s/g) data as well. To gain the maximum information regarding the correlation between BTT data, s/g-data and pressure gauge data, every blade of the second stage rotor (28 blades) is applied with s/g. However, it is well known that s/g on blades can contribute additional mistuning that had to be considered upon updating structural models. Due to the relevance of mistuning, efforts are made for its accurate experimental determination. Blade-by-blade impact tests according to a patented approach are used for this purpose. From the research point of view, it is most interesting to determine both the effect s/g-instrumentation and assembling the compressor stages on blade frequency mistuning. That is why experimental mistuning tests carried out immediately after manufacturing the blisk are repeated twice, namely, after s/g instrumentation and after assembling. To complete the pre-test program, the pure mechanical damping and modal damping ratios dependent on the ambient pressure are experimentally determined inside a pressure vessel. Subsequently the mistuning data gained before is used for updating subset of nominal system mode (SNM) models. Aerodynamic influence coefficients (AICs) are implemented to take aeroelastic interaction into account for forced response analyses. Within a comparison of different models, it is shown for the fundamental flap mode (1F) that the s/g instrumentation significantly affects the forced response, whereas the impact of assembling the compressor plays a minor role.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven and Nipkau, Jens}, title = {An inverse approach to identify tuned aerodynamic damping, system frequencies and mistuning - Part 3: Application to engine data}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, isbn = {978-0-7918-5868-4}, doi = {10.1115/GT2019-91337}, pages = {13}, abstract = {A novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system's parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstrated that the approach can identify aerodynamic damping curves, system frequencies, mistuning pattern and forced travelling wave modes (TWMs) from state of the art BTT data monitored during rig or engine tests. All derived mistuning patterns could be verified with reference measurements at standstill. The derived aerodynamic damping curves and system frequencies show a reasonable agreement with simulations. For the HPC case a multitude of excited TWMs could be identified which also lines up with previous simulations.}, language = {en} } @misc{FigaschewskyBeirowKuehhornetal., author = {Figaschewsky, Felix and Beirow, Bernd and K{\"u}hhorn, Arnold and Nipkau, Jens and Giersch, Thomas and Powers, Bronwyn}, title = {Design and Analysis of an Intentional Mistuning Experiment Reducing Flutter Susceptibility and Minimizing Forced Response of a Jet Engine Fan}, series = {ASME Turbo Expo 2017, GT2017-64621, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, journal = {ASME Turbo Expo 2017, GT2017-64621, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5093-0}, doi = {10.1115/GT2017-64621}, pages = {13}, abstract = {Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan's characteristic and limits its stable operating range. Despite the fact that this "flutter bite" usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade's natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor. Copyright © 2017 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} } @misc{KrauseStelldingerHanschkeetal., author = {Krause, Christoph and Stelldinger, Marco and Hanschke, Benjamin and K{\"u}hhorn, Arnold and Giersch, Thomas}, title = {Asynchronous Response Analysis of Non-Contact Vibration Measurements on Compressor Rotor Blades}, series = {ASME Turbo Expo 2017, GT2017-63200, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, journal = {ASME Turbo Expo 2017, GT2017-63200, June 26-30, 2017, Charlotte, NC, USA, Volume 7B}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5093-0}, doi = {10.1115/GT2017-63200}, abstract = {Although the research in non-intrusive techniques for the measurement of vibration have made major progress since the beginning in the 1960's, they are still mainly used as additional tool to the common strain gauges. Therefore, there is still a great deal of interest in the improvement of such non-contact vibration measurement techniques, to replace the intrusive ones with alternative techniques. One possibility to monitor all blades at once is blade tip-timing. The probes for a blade tip-timing measurement system are mounted circumferentially in the engine casing to log the passing times of the rotor blades. These logged time data will be compared with theoretically calculated passing times. The deviation between measured and calculated passing times can be transformed to blade displacement values. In recent years, several methods to analyse the acquired vibration data have been developed and improved. They are directed to evaluate synchronous and asynchronous blade vibration events. This paper focuses on the identification of asynchronous vibrations on rotor blades using blade tip-timing. Taking the data from all probes into account gives an opportunity to determine the vibration of each single blade. Due to the usage of a research test rig, all measurement data could be acquired in simulated real case operation scenarios. Analysis data were evaluated with a developed post processing routine based on a Fourier transformation algorithm coupled with a least square fitting procedure. Since compressor surge represents one of the most critical non synchronous events during compressor operation, in this paper a special interest is paid to the analysis of compressor surges. Vibration frequencies revealed during surge investigation will be compared with simultaneously measured strain gauge data to ensure the reliability of blade tip-timing measurement and analysis. To explain the results in more detail, the possibility of a blade damaged triggered shift of the blade characteristic frequency is shown. The most promising result of the analysis is the close correlation between the identified vibration frequencies of compressor surge events and the afterwards determined frequency mistuning and crack distributions. Blade damage becomes visible through increasing deviation between characteristic frequencies of different blades as result of multiple surge events. In addition, with the comparison of mean frequency records over each single surge among each other it is possible to restrict the blade damage time. Subsequently, the possibility to develop a process routine to predict blade damage during compressor test series could arise.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Nipkau, Jens and Meinl, Ferdinand}, title = {Simplified Estimation of Aerodynamic Damping for Bladed Rotors, Part 2: Experimental Validation During operation}, series = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY [u.a.]}, isbn = {978-0-7918-4984-2}, doi = {10.1115/GT2016-56458}, abstract = {Due to increasing requirements of future engine projects, much effort has been spent on the design of more efficient turbomachinery blades in the recent years. Besides aerodynamic efficiency constraints, these designs need to meet structural criteria ensuring that they are safe and robust with respect to High Cycle Fatigue (HCF). The estimation of the resonant vibration amplitude is done based on the aerodynamic force and the overall damping level. Since, for many applications the contribution of mechanical damping is often rather low compared to the aerodynamic counterpart, the determination of the aerodynamic damping is vital for the estimation of the forced vibration response. This second part is meant to contribute to a simplified computation of the aerodynamic damping during operation by making additional assumptions: The investigated mode family shall not suffer from flutter, has a high reduced frequency and the influence of adjacent blades is negligible. Under these circumstances a simplified approach can be introduced that allows for the computation of the mean value of the aerodynamic damping based on a steady state CFD solution of the regarded stage. It is well known, that the aerodynamic damping of a blade mode family depends on the inter blade phase angle (IBPA) and its direction of propagation, which is not covered by the simplified approach. For higher modes the difference between the minimum and maximum damping is often low and the mean value is a good approximation, whereas for fundamental modes there is often a significant difference. However, it is shown that considering a mistuned vibration response of the rotor, the expected value of the mistuned damping exhibits the mean value of IBPA-dependent aerodynamic damping. CFD simulations of an oscillating airfoil indicate a certain validity range of the simplified approach based on a modified reduced frequency and inlet Mach number, which allows to determine for which industrial applications the approach is most suitable. Finally, this range of validity is verified with experimentally determined overall damping values from strain gauge measurements during operation for 2 different industrial applications, an axial compressor stage of a jet engine and a radial turbine stage of a turbocharger. Copyright © 2016 by Rolls-Royce Deutschland Ltd \& Co KG}, language = {en} }