@misc{BeirowKuehhornFigaschewskyetal., author = {Beirow, Bernd and K{\"u}hhorn, Arnold and Figaschewsky, Felix and H{\"o}nisch, Peter and Giersch, Thomas and Schrape, Sven}, title = {Model update and validation of a mistuned high-pressure compressor blisk}, series = {The Aeronautical Journal}, volume = {123}, journal = {The Aeronautical Journal}, number = {1260}, issn = {2059-6464}, doi = {10.1017/aer.2018.149}, pages = {230 -- 247}, abstract = {In order to prepare an advanced 4-stage high-pressure compressor rig test campaign, details regarding both accomplishment and analysis of preliminary experiments are provided in this paper. The superior objective of the research project is to contribute to a reliable but simultaneously less conservative design of future high pressure blade integrated disks (blisk). It is planned to achieve trend-setting advances based on a close combination of both numerical and experimental analyses. The analyses are focused on the second rotor of this research compressor, which is the only one being manufactured as blisk. The comprehensive test program is addressing both surge and forced response analyses e.g. caused by low engine order excitation. Among others the interaction of aeroelastics and blade mistuning is demanding attention in this regard. That is why structural models are needed, allowing for an accurate forced response prediction close to reality. Furthermore, these models are required to support the assessment of blade tip timing (BTT) data gathered in the rig tests and strain gauge (s/g) data as well. To gain the maximum information regarding the correlation between BTT data, s/g-data and pressure gauge data, every blade of the second stage rotor (28 blades) is applied with s/g. However, it is well known that s/g on blades can contribute additional mistuning that had to be considered upon updating structural models. Due to the relevance of mistuning, efforts are made for its accurate experimental determination. Blade-by-blade impact tests according to a patented approach are used for this purpose. From the research point of view, it is most interesting to determine both the effect s/g-instrumentation and assembling the compressor stages on blade frequency mistuning. That is why experimental mistuning tests carried out immediately after manufacturing the blisk are repeated twice, namely, after s/g instrumentation and after assembling. To complete the pre-test program, the pure mechanical damping and modal damping ratios dependent on the ambient pressure are experimentally determined inside a pressure vessel. Subsequently the mistuning data gained before is used for updating subset of nominal system mode (SNM) models. Aerodynamic influence coefficients (AICs) are implemented to take aeroelastic interaction into account for forced response analyses. Within a comparison of different models, it is shown for the fundamental flap mode (1F) that the s/g instrumentation significantly affects the forced response, whereas the impact of assembling the compressor plays a minor role.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven}, title = {Analysis of mistuned forced response in an axial high-pressure compressor rig with focus on Tyler-Sofrin modes}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {123}, issn = {2059-6464}, doi = {10.1017/aer.2018.163}, pages = {356 -- 377}, abstract = {This paper aims at contributing to a better understanding of the effect of Tyler-Sofrin Modes (TSMs) on forced vibration responses by analysing a 4.5-stage research axial compressor rig. The first part starts with a brief review of the involved physical mechanisms and necessary prerequisites for the generation of TSMs in multistage engines. This review is supported by unsteady CFD simulations of a quasi 2D section of the studied engine. It is shown that the amplitude increasing effect due to mistuning can be further amplified by the presence of TSMs. Furthermore, the sensitivity with respect to the structural coupling of the blades and the damping as well as the shape of the expected envelope is analysed. The second part deals with the Rotor 2 blisk of the research compressor rig. The resonance of a higher blade mode with the engine order of the upstream stator is studied in two different flow conditions realised by different variable stator vane (VSV) schedules which allows to separate the influence of TSMs from the impact of mistuning. A subset of nominal system modes representation of the rotor is used to describe its mistuned vibration behaviour, and unsteady CFD simulations are used to characterise the present strength of the TSMs in the particular operating conditions. Measured maximum amplitude vs blade pattern and frequency response functions are compared against the predictions of the aeromechanical models in order to assess the strength of the TSMs as well as its influence on vibration levels.}, language = {en} } @phdthesis{Giersch, author = {Giersch, Thomas}, title = {Numerical Models for the Vibration Response of High Pressure Compressor Rotors with Validation for Forced Response and Surge}, publisher = {Mensch \& Buch}, address = {Berlin}, isbn = {978-3-86387-930-3}, pages = {XX, 136}, abstract = {The following dissertation contributes to the numerical modelling of the vibration response of integral real high pressure compressor rotor blades. It aims to validate the chosen modelling techniques with available measurement data and to demonstrate its capability for industrial applications. In detail the present dissertation investigates two different scenarios of blade excitation. Within the first scenario the predicted blade response of an integral bladed rotor is compared to measurements with focus on the blade mistuning problem. The second scenario deals with vibration response of compressor rotor blades due to surge of a transonic high pressure compressor. For the modelling purpose of the aeroelastic interaction a loose coupling technique is selected with a separate structural and flow model. The chosen structural model is based on the modal reduction technique published by Yang and Griffin, called subset of nominal system modes. The high accuracy of the model when reducing finite element models is discussed. It is shown, that the reduction algorithm is limited to mistuned modeshapes that can be expressed by a superposition of the tuned modeshapes of the rotor. The 3D Finite Volume Code AU3D, developed at Imperial College London, is used to model the steady and unsteady flow field. The flow solver is utilised to derive the external and motion induced aerodynamic forces for both investigated scenarios. To reduce the numerical effort an additional 1D flow solver is developed that allows the surge frequency and impulse loads for the compressor to be computed. The presented comparisons between measured and predicted vibration responses for the integral resonance passing are in a high agreement. The remaining deviations are within the measurement accuracy. In addition, it is demonstrated that the applied model can also be used for model identification purposes from measurement data. It is found that the investigated surge can qualitatively be well explained by the impulse loads that are generated due to the fast change of the aerodynamic loads. The predicted vibration levels are quantitatively and qualitatively in good agreement to the measured data. It is shown that further analysis is required to understand the considerable scatter in vibration response of successive surge cycles.}, language = {en} } @misc{FigaschewskyKuehhornBeirowetal., author = {Figaschewsky, Felix and K{\"u}hhorn, Arnold and Beirow, Bernd and Giersch, Thomas and Schrape, Sven and Nipkau, Jens}, title = {An inverse approach to identify tuned aerodynamic damping, system frequencies and mistuning - Part 3: Application to engine data}, series = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, journal = {ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17-21, 2019, Phoenix, Arizona, USA}, isbn = {978-0-7918-5868-4}, doi = {10.1115/GT2019-91337}, pages = {13}, abstract = {A novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system's parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstrated that the approach can identify aerodynamic damping curves, system frequencies, mistuning pattern and forced travelling wave modes (TWMs) from state of the art BTT data monitored during rig or engine tests. All derived mistuning patterns could be verified with reference measurements at standstill. The derived aerodynamic damping curves and system frequencies show a reasonable agreement with simulations. For the HPC case a multitude of excited TWMs could be identified which also lines up with previous simulations.}, language = {en} } @misc{FranzKuehhornGierschetal., author = {Franz, Falco and K{\"u}hhorn, Arnold and Giersch, Thomas and Schrape, Sven and Figaschewsky, Felix}, title = {Influence of Inlet Distortions on the Forced Vibration of a High Pressure Compressor Rig}, series = {ASME 2020 Turbo Expo - Virtual Conference, September 2020}, journal = {ASME 2020 Turbo Expo - Virtual Conference, September 2020}, abstract = {The accurate prediction of blade vibrations is a key factor for the development of reliable turbomachines. This paper focusses on forced vibrations. The excitation frequency is an integer multiple of the rotor revolution frequency, which is commonly called engine order. Aerodynamic excitation of blades is created by stator wakes or the potential fields of downstream obstacles, which usually leads to high engine orders correlating to the number of vanes. Resonance crossings appear at higher frequencies corresponding to higher modes. Besides high engine orders, low engine orders not related to the number of vanes may exist. They can be caused by a disturbance of the perfect cyclic symmetry of the flow pattern due to geometry variations or inlet distortions. Inlet distortions result from installation effects, maneuvers or crosswind. Low engine orders affect fundamental modes at high engine speeds. High static loads due to centrifugal forces combined with dynamic excitation and low damping may lead to unacceptable high stresses. This paper aims at getting a better understanding of the simulative prediction of low engine order excitation with special focus on inlet distortions. Under investigation is a 4.5 stage research compressor rig, for which an extensive amount of test data is available. A three dimensional CFD-model of the compressor is used to compute the forcings generated by different distortion patterns. The first two stages are modeled as a full-annulus, which allows to fully resolve the spatial content of the inlet distortion patterns. The rotor 2 blisk is of special interest in this investigation. The propagation of the distortion after stage 2 with rotor 2 is not of interest, therefore the downstream stages are modeled as single passages in order to save computational time. The distortion patterns are the outcome of traversals of different screens with total pressure probes. During distortion measurements, the screens located in the inlet duct were rotated relative to the fixed instrumentation. The traversals in resonance of the first bending mode of rotor 2 with a low engine order four showed a dependency of the screen angle on the vibration amplitude. Acceleration and deceleration maneuvers through this resonance were conducted with screen angles set to those of smallest and highest response. Vibration amplitudes of the blisk rotor are measured by strain gauges and a blade tip timing system. Simulation results are compared against vibration measurements. Aerodynamic damping is calculated with the influence coefficient method. The effects of mistuning are included in the calculation of vibration amplitudes via a subset of nominal system modes model to give a meaningful comparison against real engine hardware. The mistuning distribution of the blisk was identified at rest for the fundamental bending mode. The presence of a 2nd excitation mechanism of unknown source explains the observed test data. This unknown source is not included in the CFD model. A direct comparison of simulation and measurement is still possible by leveraging the observed superposition effects of both excitation sources. The consequent approach is to identify and substract the forcing due to the unknown source, leaving only the delta forcing due to inlet distortions.}, language = {en} } @misc{HanschkeKuehhornSchrapeetal., author = {Hanschke, Benjamin and K{\"u}hhorn, Arnold and Schrape, Sven and Giersch, Thomas}, title = {Consequences of Borescope Blending Repairs on Modern HPC Blisk Aeroelasticity}, series = {Journal of Turbomachinery}, volume = {141}, journal = {Journal of Turbomachinery}, number = {2}, issn = {1528-8900}, doi = {10.1115/1.4041672}, pages = {7}, abstract = {Objective of this paper is to analyze the consequences of borescope blending repairs on the aeroelastic behavior of a modern high pressure compressor (HPC) blisk. To investigate the blending consequences in terms of aerodynamic damping and forcing changes, a generic blending of a rotor blade is modeled. Steady-state flow parameters like total pressure ratio, polytropic efficiency, and the loss coefficient are compared. Furthermore, aerodynamic damping is computed utilizing the aerodynamic influence coefficient (AIC) approach for both geometries. Results are confirmed by single passage flutter (SPF) simulations for specific interblade phase angles (IBPA) of interest. Finally, a unidirectional forced response analysis for the nominal and the blended rotor is conducted to determine the aerodynamic force exciting the blade motion. The frequency content as well as the forcing amplitudes is obtained from Fourier transformation of the forcing signal. As a result of the present analysis, the change of the blade vibration amplitude is computed.}, language = {en} } @misc{YangBeirowGiersch, author = {Yang, Jingjie and Beirow, Bernd and Giersch, Thomas}, title = {Simulation and Investigation of an Intentionally Mistuned Blisk Rotor in a High Pressure Compressor}, series = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, journal = {ASME 2022 Turbomachinery Technical Conference \& Exposition (GT2022)}, abstract = {In modern aircraft engines, blade integrated disk (blisk) is widely implemented. While blisk rotor design brings numerous advantages including weight reduction, aerodynamic efficiency improvement, and manufacturing simplification, its low mechanical damping due to the absence of friction between disk and blades makes the rotor more susceptible to vibration. Given that damage to blisk rotor sometimes requires the whole assembly to be replaced, effort has been made to alleviate the unexpected vibration amplitude within operating range, among which intentional mistuning is regarded as one of the commonly used technique. Mistuning refers to blade-to-blade deviation of mechanical properties, which is inevitable in practice due to manufacturing tolerances or wear. Through the application of intentional mistuning, it is expected that the amplitude of synchronous or nonsynchronous vibration (NSV) will be reduced without severely losing aerodynamic performance. In this paper, the effect of intentional mistuning has been investigated for the blisk rotor of a 1.5-stage transonic research compressor at Technical University of Darmstadt. According to the previous test campaign, the baseline rotor has shown its susceptibility to NSV due to first torsion mode in the near stall region. The rotor was then intentionally mistuned. Subsequent tests have proven a successful suppression of flutter problem. In order to have a comprehensive understanding of the effect of the applied mistuning pattern, simulations are performed using a FVM based CFD solver to produce comparable results as shown in the test campaign. In the simulation, mistuned systems are modelled in comparison with the nominal tuned reference. Geometrical disturbance and frequency disturbance are introduced to the tuned model first separately and then simultaneously. In this way, contribution of aerodynamic and structural mistuning to the suppression of NSV is identified based on the CFD results. Later, system eigenvalues of the mistuned aeromechanical model are determined by making use of the blade individual response in time domain. The obtained results are compared with mistuned eigenvalues calculated by a reduced order model (ROM), which utilizes the idea of subset of nominal modes (SNM). This makes it possible to demonstrate the feasibility of using SNM to carry out stability analysis when designing mistuning pattern for vibration of NSV type. It also allows a compare between the linear structural model of the SNM and the non-linear aeromechanic model of the CFD solver on capturing the non-linear nature of the flow, especially in the context of NSV.}, language = {en} }