@misc{WahlbergArpaiaSeiboldetal., author = {Wahlberg, Eric and Arpaia, Riccardo and Seibold, G{\"o}tz and Rossi, Matteo and Fumagalli, Roberto and Trabaldo, Edoardo and Brookes, Nicholas B. and Braicovich, Lucio and Caprara, Sergio and Lombardi, Floriana and Gran, Ulf and Ghiringhelli, Giacomo Claudio and Bauch, Thilo}, title = {Restored strange metal phase through suppression of charge density waves in underdoped YBa2Cu3O7-δ}, series = {Science}, volume = {373}, journal = {Science}, number = {6562}, doi = {10.1126/science.abc8372}, pages = {1506 -- 1510}, abstract = {The normal state of optimally doped cuprates is dominated by the "strange metal" phase that shows a linear temperature (T) dependence of the resistivity persisting down to the lowest T. For underdoped cuprates, this behavior is lost below the pseudogap temperature T*, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the T-linear resistivity of highly strained, ultrathin, underdoped YBa2Cu3O7-δ films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from T-linear resistivity in underdoped cuprates. Our results illustrate the potential of using strain control to manipulate the ground state of quantum materials.}, language = {en} }