@misc{ZeugnerKaiserSchmidtetal., author = {Zeugner, Alexander and Kaiser, Martin and Schmidt, Peer and Menshchikova, Tatiana V. and Rusinov, Igor P. and Markelov, Anton V. and Van den Broek, Wouter and Chulkov, Evgueni V. and Doert, Thomas and Ruck, Michael and Isaeva, Anna}, title = {Modular Design with 2D Topological-Insulator Building Blocks: Optimized Synthesis and Crystal Growth and Crystal and Electronic Structures of BiₓTeI (x = 2, 3)}, series = {Chemistry of Materials}, volume = {29}, journal = {Chemistry of Materials}, number = {3}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.6b05038}, pages = {1321 -- 1337}, abstract = {Structural engineering of topological bulk materials is systematically explored with regard to the incorporation of the buckled bismuth layer [Bi₂], which is a 2D topological insulator per se, into the layered BiTeI host structure. The previously known bismuth telluride iodides, BiTeI and Bi₂TeI, offer physical properties relevant for spintronics. Herewith a new cousin, Bi₃TeI (sp.gr. R3m, a = 440.12(2) pm, c = 3223.1(2) pm), joins the ranks and expands this structural family. Bi₃TeI = [Bi₂][BiTeI] represents a stack with strictly alternating building blocks. Conditions for reproducible synthesis and crystal-growth of Bi₂TeI and Bi₃TeI are ascertained, thus yielding platelet-like crystals on the millimeter size scale and enabling direct measurements. The crystal structures of Bi₂TeI and Bi₃TeI are examined by X-ray diffraction and electron microscopy. DFT calculations predict metallic properties of Bi₃TeI and an unconventional surface state residing on various surface terminations. This state emerges as a result of complex hybridization of atomic states due to their strong intermixing. Our study does not support the existence of new stacking variants BiₓTeI with x > 3; instead, it indicates a possible homogeneity range of Bi₃TeI. The series BiTeI-Bi₂TeI-Bi₃TeI illustrates the influence of structural modifications on topological properties.}, language = {en} }