@misc{KuhnTothGeppertetal., author = {Kuhn, Ramona and T{\´o}th, Elisabeth and Geppert, Helmut and Fischer, Thomas and Martienssen, Marion}, title = {Identification of the Complete Photodegradation Pathway of Ethylenediaminetetra(methylenephosphonic acid) in Aqueous Solution}, series = {Clean - soil, air, water : a journal of sustainability and environmental safety}, volume = {45}, journal = {Clean - soil, air, water : a journal of sustainability and environmental safety}, number = {5}, issn = {1863-0669}, doi = {10.1002/clen.201500774}, pages = {1 -- 8}, abstract = {This study aims at investigating the abiotic degradation pathway of ethylenediaminetetra(methylenephosphonic acid) (EDTMP) simulated applying UV irradiation. The degradation of EDTMP and formation of degradation products was determined using LC-MS and ³¹P-NMR. In the laboratory scale experiments, EDTMP was degraded within 30 min and the degradation products, iminodi(methylenephosphonic acid) (IDMP), ethylaminobis(methylenephosphonic acid) (EABMP), and amino- (methylenephosphonic acid) (AMPA), were simultaneously released. IDMP was the main degradation product of EDTMP. Therefore, we conclude that the initial cleavage of EDTMP is a heterolytically driven process, which starts the degradation process at the intramolecular C-N bond. In contrast, the main product of a possible homolytic C-C cleavage of methylaminobis(methylenephosphonic acid) could not be confirmed with either LC-MS or ³¹P-NMR. Additionally, there was no evidence for a primary attack on the C-P bond. All identified degradation products of EDTMP have been mineralized to carbon dioxide (CO₂). Three additional degradation products (M1, M2, and M3) have been found using the ³¹P-NMR analysis but have not yet been quantified using LC-MS. We assume that the unidentified degradation product M1 is related to m/z 312, M2 to m/z 341, and M3 to m/z 409. Thus we concluded that EDTMP undergoes photochemical conversion to IDMP, the main degradation product. EABMP and AMPA also accumulate, but in smaller amounts. All intermediates are further mineralized to CO₂.}, language = {en} }