@misc{MsinjiliVoglerSturmetal., author = {Msinjili, Nsesheye S. and Vogler, Nico and Sturm, Patrick and Neubert, Markus and Schr{\"o}der, Hans-J{\"u}rgen and K{\"u}hne, Hans-Carsten and H{\"u}nger, Klaus-J{\"u}rgen and Gluth, Gregor J. G.}, title = {Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars}, series = {Construction and Building Materials}, volume = {266}, journal = {Construction and Building Materials}, issn = {0950-0618}, doi = {10.1016/j.conbuildmat.2020.120990}, pages = {11}, abstract = {While calcined clays in general have been credited with a great potential to mitigate CO2 emissions related to cement production and consumption, calcined brick clays are currently understudied in this regard. In the present work, two brick clays, a low-grade kaolinitic clay, and a mixed clay composed of 50\% brick clay and 50\% low-grade kaolinitic clay were studied regarding transformations on calcination, and strength and durability performance as well as pore structure of mortars made with the blended cements. All calcined clays exhibited pozzolanic reactivity, with the performance of the brick clays inferior to the low-grade kaolinitic clay. However, the mixed clay performed very similar to the low-grade kaolinitic clay, which points to a viable option for optimal use of brick clays in cementitious systems. The carbonation resistance of the blended cement mortars was generally worse than that of the plain Portland cement mortar, as expected, but the former exhibited a significantly improved chloride penetration resistance. The latter improvement was due to pore structure refinement in the blended cement mortars, compared to the Portland cement mortar.}, language = {en} }