@misc{FlessGrafDallyetal., author = {Fless, Friederike and Graf, Bernhard and Dally, Ortwin and Franke, Ute and Gerbich, Christine and Lengyel, Dominik and Knaut, Matthias and N{\"a}ser, Claudia and Savoy, B{\´e}n{\´e}dicte and Steinm{\"u}ller, Laura Katharina and Steudtner, Katharina and Taschner, Moritz and Toulouse, Catherine and Weber, Stefan}, title = {Authenticity and Communication}, series = {eTOPOI Journal for Ancient Studies}, volume = {6}, journal = {eTOPOI Journal for Ancient Studies}, issn = {2192-2608}, pages = {479 -- 524}, abstract = {Authenticity is not an absolute and constant quality inherent in an object or an experience; it is constructed in the process of research. Actors inscribe and attribute it to both material objects and subjective processes like communication and consumption. This article from the research group seeks on the one hand to reflect on the historical scope of action and action patterns among actors from various disciplines between the conflicting priorities of authentication and communication, and on the other to find ways to visualize and operationalize attribution processes through joint reflection. When we look at both history and the discussions fifty years after the Venice Charter, its idea to hand on historic monuments "in the full richness of their authenticity" has turned into an abundance of vibrant action and decision-making.}, language = {en} } @misc{KuenzelHoffmannWeberetal., author = {K{\"u}nzel, Stephan R. and Hoffmann, Maximilian and Weber, Silvio and K{\"u}nzel, Karolina and K{\"a}mmerer, Susanne and G{\"u}nscht, Mario and Klapproth, Erik and Rausch, Johanna S. E. and Sadek, Mirna S. and Kolanowski, Tomasz and Meyer-Roxlau, Stefanie and Piorkowski, Christopher and Tugtekin, Sems M. and Rose-John, Stefan and Yin, Xiaoke and Mayr, Manuel and Kuhlmann, Jan Dominik and Wimberger, Pauline and Gr{\"u}tzmann, Konrad and Herzog, Natalie and K{\"u}pper, Jan-Heiner and O'Reilly, Molly and Kabir, S. Nashitha and Sommerfeld, Laura C. and Guan, Kaomei and Wielockx, Ben and Fabritz, Larissa and Nattel, Stanley and Ravens, Ursula and Dobrev, Dobromir and Wagner, Michael and El-Armouche, Ali}, title = {Diminished PLK2 Induces Cardiac Fibrosis and Promotes Atrial Fibrillation}, series = {Circulation Research}, volume = {129}, journal = {Circulation Research}, number = {8}, issn = {1524-4571}, doi = {10.1161/CIRCRESAHA.121.319425}, pages = {804 -- 820}, abstract = {Rationale: Fibrosis promotes the maintenance of atrial fibrillation (AF), making it resistant to therapy. Improved understanding of the molecular mechanisms leading to atrial fibrosis will open new pathways toward effective antifibrotic therapies. Objective: This study aims to decipher the mechanistic interplay between PLK2 (polo-like kinase 2) and the profibrotic cytokine OPN (osteopontin) in the pathogenesis of atrial fibrosis and AF. Methods and Results: Atrial PLK2 mRNA expression was 10-fold higher in human fibroblasts than in cardiomyocytes. Compared with sinus rhythm, right atrial appendages and isolated right atrial fibroblasts from patients with AF showed downregulation of PLK2 mRNA and protein, along with increased PLK2 promotor methylation. Genetic deletion as well as pharmacological inhibition of PLK2 induced profibrotic phenotype conversion in cardiac fibroblasts and led to a striking de novo secretion of OPN. Accordingly, PLK2-deficient (PLK2 knockout) mice showed cardiac fibrosis and were prone to experimentally induced AF. In line with these findings, OPN plasma levels were significantly higher only in patients with AF with atrial low-voltage zones (surrogates of fibrosis) compared with sinus rhythm controls. Mechanistically, we identified ERK1/2 as the relevant downstream mediator of PLK2 leading to increased OPN expression. Finally, oral treatment with the clinically available drug mesalazine, known to inhibit ERK1/2, prevented cardiac OPN overexpression and reversed the pathological PLK2 knockout phenotype in PLK2 knockout mice. Conclusions: Abnormal PLK2/ERK1/2/OPN axis function critically contributes to AF-related atrial fibrosis, suggesting reinforcing PLK2 activity and/or OPN inhibition as innovative targets to prevent fibrosis progression in AF. Mesalazine derivatives may be used as lead compounds for the development of novel anti-AF agents targeting fibrosis.}, language = {en} } @misc{MartreDueriBrownetal., author = {Martre, Pierre and Dueri, Sibylle and Brown, Hamish and Asseng, Senthold and Ewert, Frank and Webber, Heidi and George, Mike and Craigie, Rob and Guarin, Jose Rafael and Pequeno, Diego and Stella, Tommaso and Ahmed, Mukhtar and Alderman, Phillip and Basso, Bruno and Berger, Andres and Bracho Mujica, Gennady and Cammarano, Davide and Chen, Yi and Dumont, Benjamin and Rezaei, Ehsan Eyshi and Fereres, Elias and Ferrise, Roberto and Gaiser, Thomas and Gao, Yujing and Garcia-Vila, Margarita and Gayler, Sebastian and Hochman, Zvi and Hoogenboom, Gerrit and Kersebaum, Kurt C. and Nendel, Claas and Olesen, J{\o}rgen and Padovan, Gloria and Palosuo, Taru and Priesack, Eckart and Pullens, Johannes and Rodr{\´i}guez, Alfredo and R{\"o}tter, Reimund P. and Ruiz Ramos, Margarita and Semenov, Mikhail and Senapati, Nimai and Siebert, Stefan and Srivastava, Amit Kumar and St{\"o}ckle, Claudio and Supit, Iwan and Tao, Fulu and Thorburn, Peter and Wang, Enli and Weber, Tobias and Xiao, Liujun and Zhao, Chuang and Zhao, Jin and Zhao, Zhigan and Zhu, Yan}, title = {Winter wheat experiments to optimize sowing dates and densities in a high-yielding environment in New Zealand: field experiments and AgMIP-Wheat multi-model simulations}, series = {Open Data Journal for Agricultural Research}, volume = {10}, journal = {Open Data Journal for Agricultural Research}, publisher = {Wageningen University and Research}, issn = {2352-6378}, doi = {10.18174/odjar.v10i0.18442}, pages = {14 -- 21}, abstract = {This paper describes the data set that was used to test the accuracy of twenty-nine crop models in simulating the effect of changing sowing dates and sowing densities on wheat productivity for a high-yielding environment in New Zealand. The data includes one winter wheat cultivar (Wakanui) grown during six consecutive years, from 2012-2013 to 2017-2018, at two farms located in Leeston and Wakanui in Canterbury, New Zealand. The simulations were carried out in the framework of the Agricultural Model Intercomparison and Improvement Project for wheat (AgMIP-Wheat). Data include local daily weather data, soil profile characteristics and initial conditions, crop measurements at maturity (grain, stem, chaff and leaf dry weight, ear number and grain number, grain unit dry weight), and at stem elongation and anthesis (total above ground dry biomass, leaf number per stem and leaf area index). Several in-season measurements of the normalized difference vegetation index (NDVI) and the fraction of intercepted photosynthetically active radiation (FIPAR) are also available. The crop model simulations include both daily in-season and end-of-season results from twenty-nine wheat models.}, language = {en} } @misc{KediaDasKotetal., author = {Kedia, Mayank and Das, Chittaranjan and Kot, Malgorzata and Yalcinkaya, Yenal and Zuo, Weiwei and Tabah Tanko, Kenedy and Matvija, Peter and Ezquer, Mikel and Cornago, I{\~n}aki and Hempel, Wolfram and Kauffmann, Florian and Plate, Paul and Lira-Cantu, Monica and Weber, Stefan A.L. and Saliba, Michael}, title = {Mitigating the amorphization of perovskite layers by using atomic layer deposition of alumina}, series = {Energy \& environmental science}, volume = {18}, journal = {Energy \& environmental science}, number = {11}, publisher = {Royal Society of Chemistry (RSC)}, address = {London}, issn = {1754-5692}, doi = {10.1039/D4EE05703A}, pages = {5250 -- 5263}, abstract = {Atomic layer deposition of aluminum oxide (ALD-Al2O3) layers has recently been studied for stabilizing perovskite solar cells (PSCs) against environmental stressors, such as humidity and oxygen. In addition, the ALD-Al2O3 layer acts as a protective barrier, mitigating pernicious halide ion migration from the perovskite towards the hole transport interface. However, its effectiveness in preventing the infiltration of ions and additives from the hole-transport layer into perovskites remains insufficiently understood. Herein, we demonstrate the deposition of a compact ultrathin (∼0.75 nm) ALD-Al2O3 layer that conformally coats the morphology of a triple-cation perovskite layer. This promotes an effective contact of the hole transporter layer on top of the perovskite, thereby improving the charge carrier collection between these two layers. Upon systematically investigating the layer-by-layer structure of the PSC, we discovered that ALD-Al2O3 also acts as a diffusion barrier for the degraded species from the adjacent transport layer into the perovskite. In addition to these protective considerations, ALD-Al2O3 impedes the transition of crystalline perovskites to an undesired amorphous phase. Consequently, the dual functionality (i.e., enhanced contact and diffusion barrier) of the ALD-Al2O3 protection enhanced the device performance from 19.1\% to 20.5\%, while retaining 98\% of its initial performance compared to <10\% for pristine devices after 1500 h of outdoor testing under ambient conditions. Finally, this study deepens our understanding of the mechanism of ALD-Al2O3 as a two-way diffusion barrier, highlighting the multifaceted role of buffer layers in interfacial engineering for the long-term stability of PSCs.}, language = {en} }