@incollection{SchmidtBinnewiesGlaumetal., author = {Schmidt, Peer and Binnewies, Michael and Glaum, Robert and Schmidt, Marcus}, title = {Advanced Topics on Crystal Growth}, editor = {Ferreira, Sukarno}, edition = {1. Auflage}, publisher = {Intech Open}, address = {Rijeka}, isbn = {978-953-51-1010-1}, doi = {10.5772/55547}, pages = {228 -- 305}, abstract = {Chemical Vapor Transport Reactions-Methods, Materials, Modeling: A variety of processes of crystal growth proceeds via the gas phase. A short comparative overview on gas phase transports is given here. In the main the concept of Chemical Vapor Transport Reactions is presented.}, language = {en} } @book{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Chemische Transportreaktionen}, edition = {1. Auflage}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-024897-5}, pages = {XIV, 639}, abstract = {Chemische Transportreaktionen weisen ein gemeinsames Merkmal auf: In Gegenwart eines gasf{\"o}rmigen Reaktionspartners, des Transportmittels, wird eine feste oder fl{\"u}ssige Komponente verfl{\"u}chtigt. An anderer Stelle scheidet sie sich meist in Form gut ausgebildeter Kristalle wieder ab. So ist der Chemische Transport z. B. f{\"u}r den Festk{\"o}rperchemiker ein unentbehrliches Verfahren zur Herstellung reiner, gut kristallisierter Feststoffe. Als umfassendes Handbuch behandelt dieses Werk die vielseitigen Aspekte von chemischen Transportreaktionen: Von der Grundlagenforschung bis hin zur praktischen Bedeutung, beispielsweise f{\"u}r die Funktionsweise von Halogenlampen.}, language = {de} } @misc{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Chemical Vapor Transport Reactions - A Historical Review}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {Vol. 639}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {2}, issn = {1521-3749}, doi = {10.1002/zaac.201300048}, pages = {219 -- 229}, abstract = {Since their first recognition in mineral forming processes some 150 years ago chemical vapor transport reactions (CVTR) have attracted continuous scientific interest. Due to the pioneering work of Harald Sch{\"a}fer quantitative understanding and exploitation of transport reactions for crystal growth, synthesis, investigation of high-temperature gas species, and thermodynamic studies have become possible. Renewed interest in CVT is triggered by the demand of material sciences for novel compounds with tailor-made physical properties and by the need for efficient recycling strategies for various metals from industrial waste.}, language = {en} } @misc{SchoeneichSchmidtSchmidt, author = {Sch{\"o}neich, Michael and Schmidt, Marcus P. and Schmidt, Peer}, title = {Chemical Vapour Transport of Bismuth and Antimony Chalcogenides M2Q3 (M = Sb, Bi, Q = Se, Te)}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {636}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {9-10}, issn = {1521-3749}, doi = {10.1002/zaac.201000149}, pages = {1810 -- 1816}, abstract = {Thermodynamic modelling of the ternary systems M/Q/I (M = Sb, Bi, Q = Se, Te) indicated solid-gas equilibria suitable for chemical vapour transport of bismuth and antimony chalcogenides. The predictions of the modelling were confirmed by transport experiments on a transport balance. The optimum transport conditions using iodine as transport agent were determined for all systems to: ϑsource = 500 °C and ϑsink = 450 °C. For ΔT > 50 K the sequential transport of chalcogenide iodides MQI followed by M2Q3 occurs. Thermodynamic standard data of the gas species SbI(g) were concluded from equilibrium calculations: ΔH0f,298(SbI(g)) = 106 ± 3 kJ·mol-1; S0298(SbI(g)) = 255 ± 3 J·mol-1·K-1; Cp(SbI(g)) = 37 ± 1 J·mol-1·K-1}, language = {en} } @incollection{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Crystal Growth Via the Gas Phase by Chemical Vapor Transport Reactions}, series = {Handbook of Solid State Chemistry, Volume 2: Synthesis}, booktitle = {Handbook of Solid State Chemistry, Volume 2: Synthesis}, editor = {Dronskowski, Richard and Kikkawa, Shinichi and Stein, Andreas}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {978-3-527-32587-0}, abstract = {The term chemical vapor transport (CVT) summarizes a variety of reactions that show one common feature: a condensed phase, typically a metallic or salt like solid, is volatilized in the presence of a gaseous reactant, the so-called transport agent, and deposits elsewhere, usually in the form of crystals. The deposition will take place if the site of volatilization and the site of crystallization have different temperatures. In many cases, chemical vapor transport is associated with a purification effect. CVT-reactions of elements, oxides, sulfides, selenides, tellurides, phosphates, sulfates, halides, oxide halides, phosphides, arsenides, intermetallics, and so on, are known.}, language = {en} } @misc{BinnewiesSchmidtSchmidt, author = {Binnewies, Michael and Schmidt, Marcus and Schmidt, Peer}, title = {Chemical Vapor Transport Reactions - Arguments for Choosing a Suitable Transport Agent}, series = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie}, volume = {643}, journal = {Zeitschrift f{\"u}r Anorganische und Allgemeine Chemie}, number = {21}, issn = {1521-3749}, doi = {10.1002/zaac.201700055}, pages = {1295 -- 1311}, abstract = {A variety of processes of crystal growth proceeds via the gas phase. If the initial solid material is volatilized in a heterogeneous reaction under presence of a gaseous reactant, the transport agent, the term Chemical Vapor Transport Reaction (CVT) is applied. Crystallization processes by CVT are known for both elements, intermetallics, binary and complex oxides, halides, chalcogenides, and pnictides. Even if the formation of volatile halides is a common feature of almost all vapor transport reactions, significant differences are there concerning the choice of a suitable transport agent depending on the nature of the initial solid phase. Actually, the appropriateness of transport agents for the respective transport reaction can be described in a thermodynamic way. Besides some basic principles for systematic evaluation more practical recommendations for suitable experimental conditions are given for CVT of different classes of inorganic materials.}, language = {en} } @book{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Chemische Transportreaktionen}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-048350-5}, pages = {639}, abstract = {Chemische Transportreaktionen weisen ein gemeinsames Merkmal auf: In Gegenwart eines gasf{\"o}rmigen Reaktionspartners, des Transportmittels, wird eine feste oder fl{\"u}ssige Komponente verfl{\"u}chtigt. An anderer Stelle scheidet sie sich meist in Form gut ausgebildeter Kristalle wieder ab. So ist der Chemische Transport z. B. f{\"u}r den Festk{\"o}rperchemiker ein unentbehrliches Verfahren zur Herstellung reiner, gut kristallisierter Feststoffe. Als umfassendes Handbuch behandelt dieses Werk die vielseitigen Aspekte von Chemischen Transportreaktionen: Von der Grundlagenforschung bis hin zur praktischen Bedeutung, beispielsweise f{\"u}r die Funktionsweise von Halogenlampen.}, language = {de} } @book{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Chemical vapor transport reactions}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-048349-9}, pages = {642}, abstract = {This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.}, language = {en} } @book{BinnewiesGlaumSchmidtetal., author = {Binnewies, Michael and Glaum, Robert and Schmidt, Marcus and Schmidt, Peer}, title = {Chemical Vapor Transport Reactions}, edition = {1. Auflage}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-025464-8}, pages = {XIV, 642}, abstract = {This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.}, language = {en} } @misc{EcksteinHohmannWeihrichetal., author = {Eckstein, Nadine and Hohmann, Andrea and Weihrich, Richard and Nilges, Tom and Schmidt, Peer}, title = {Synthesis and Phase Relations of Single-Phase Fibrous Phosphorus}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {Vol. 639}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {15}, issn = {1521-3749}, doi = {10.1002/zaac.201300327}, pages = {2741 -- 2743}, abstract = {Fibrous phosphorus is one of the known crystalline allotropes under standard pressure conditions. It has been predicted prior to its successful synthesis and structural characterization. The allotrope consists of parallel, tubular double strands of phosphorus, in contrast to the violet form of Hittorf's phosphorus, where the same strands are arranged in a perpendicular orientation towards each other. This structural similarity results in an almost identical energetic stability leading to a somehow problematic realization of single-phase materials. We herein report on the successful synthesis route to single phase fibrous phosphorus and the in situ characterization of its formation via the gas phase applying CuCl2 as a mineralizer. The sublimation pressure of fibrous phosphorus is slightly lower than the one of the black allotrope. This behavior indicates thermodynamic stability of fibrous phosphorus.}, language = {en} }