@misc{SohailRiedelDorneanuetal., author = {Sohail, Norman and Riedel, Ramona and Dorneanu, Bogdan and Arellano-Garcia, Harvey}, title = {Prolonging the Life Span of Membrane in Submerged MBR by the Application of Different Anti-Biofouling Techniques}, series = {Membranes}, volume = {13}, journal = {Membranes}, number = {2}, issn = {2077-0375}, doi = {10.3390/membranes13020217}, abstract = {The membrane bioreactor (MBR) is an efficient technology for the treatment of municipal and industrial wastewater for the last two decades. It is a single stage process with smaller footprints and a higher removal efficiency of organic compounds compared with the conventional activated sludge process. However, the major drawback of the MBR is membrane biofouling which decreases the life span of the membrane and automatically increases the operational cost. This review is exploring different anti-biofouling techniques of the state-of-the-art, i.e., quorum quenching (QQ) and model-based approaches. The former is a relatively recent strategy used to mitigate biofouling. It disrupts the cell-to-cell communication of bacteria responsible for biofouling in the sludge. For example, the two strains of bacteria Rhodococcus sp. BH4 and Pseudomonas putida are very effective in the disruption of quorum sensing (QS). Thus, they are recognized as useful QQ bacteria. Furthermore, the model-based anti-fouling strategies are also very promising in preventing biofouling at very early stages of initialization. Nevertheless, biofouling is an extremely complex phenomenon and the influence of various parameters whether physical or biological on its development is not completely understood. Advancing digital technologies, combined with novel Big Data analytics and optimization techniques offer great opportunities for creating intelligent systems that can effectively address the challenges of MBR biofouling.}, language = {en} } @misc{RiedelKrahlBuderetal., author = {Riedel, Ramona and Krahl, Kathrin and Buder, Kai and B{\"o}llmann, J{\"o}rg and Braun, Burga and Martienssen, Marion}, title = {Novel standard biodegradation test for synthetic phosphonates}, series = {Journal of Microbiological Methods}, volume = {Vol. 212}, journal = {Journal of Microbiological Methods}, issn = {1872-8359}, doi = {10.1016/j.mimet.2023.106793}, pages = {1 -- 13}, abstract = {Determination of biodegradation of synthetic phosphonates such as aminotris(methylenephosphonic acid) (ATMP), ethylenediamine tetra(methylenephosphonic acid) (EDTMP), or diethylenetriamine penta(methylenephosphonic acid) (DTPMP) is a great challenge. Commonly, ready biodegradability of organic substances is assessed by OECD 301 standard tests. However, due to the chemical imbalance of carbon to phosphorus synthetic phosphonates do not promote microbial growth and, thus, limiting its biodegradation. Therefore, standard OECD test methods are not always reliable to predict the real biodegradability of phosphonates. In the presented study, we report the development of a standardized batch system suitable to synthetic phosphonates such as ATMP, EDTMP, DTPMP and others. The novel standard batch test is applicable with pure strains, activated sludge from different wastewater treatment plants (i.e., municipal and industrial), and with tap water as inoculum. We optimized the required calcium and magnesium exposure levels as well as the amount of the start inoculum biomass. We demonstrated that our test also allows to determine several parameters including ortho-phosphate (o-PO43􀀀 ), total phosphorus (TP), ammonium (NH4+) and total organic carbon (TOC). In addition, also LC/MS analyses of cell-free medium is applicable for determining the mother compounds and metabolites. We applied our optimized standardized batch with selected phosphonates and evidenced that the chemical structure has a major influence of the microbial growth rates. Thus, our novel batch test overcomes drawbacks of the OECD 301 test series for determination of easy biodegradability for stoichiometric imbalanced organic compounds such as phosphonates.}, language = {en} } @misc{RiedelCommichauBenndorfetal., author = {Riedel, Ramona and Commichau, Fabian M. and Benndorf, Dirk and Hertel, Robert and Holzer, Katharina and Mardoukhi, Mohammad Saba Yousef and Noack, Laura and Martienssen, Marion}, title = {Biodegradation of selected aminophosphonates by the bacterial isolate Ochrobactrum sp. BTU1}, series = {Microbial Research}, volume = {280}, journal = {Microbial Research}, issn = {0944-5013}, doi = {10.1016/j.micres.2024.127600}, pages = {1 -- 12}, abstract = {Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding.}, language = {en} } @misc{AhmedMartienssenBryantetal., author = {Ahmed, Naveed and Martienssen, Marion and Bryant, Isaac Mbir and Vione, Davide and Bruzzoniti, Maria Concetta and Riedel, Ramona}, title = {Investigation on UV Degradation and Mechanism of 6:2 Fluorotelomer Sulfonamide Alkyl Betaine, Based on Model Compound Perfluorooctanoic Acid}, series = {ChemEngineering}, volume = {8}, journal = {ChemEngineering}, number = {2}, issn = {2305-7084}, doi = {10.3390/chemengineering8020032}, abstract = {The UV treatment of 6:2 FTAB involves the mitigation of this persistent chemical by the impact of ultraviolet radiation, which is known for its resistance to environmental breakdown. UV treatment of PFOA and/or 6:2 FTAB, and the role of responsible species and their mechanism have been presented. Our investigation focused on the degradation of perfluorooctanoic acid (PFOA) and 6:2 fluorotelomer sulfonamide alkyl betaine (6:2 FTAB, Capstone B), using UV photolysis under various pH conditions. Initially, we used PFOA as a reference, finding a 90\% decomposition after 360 min at the original (unadjusted) pH 5.6, with a decomposition rate constant of (1.08 ± 0.30) × 10-4 sec-1 and a half-life of 107 ± 2 min. At pH 4 and 7, degradation averaged 85\% and 80\%, respectively, while at pH 10, it reduced to 57\%. For 6:2 FTAB at its natural pH 6.5, almost complete decomposition occurred. The primary UV transformation product was identified as 6:2 fluorotelomer sulfonic acid (6:2 FTSA), occasionally accompanied by shorter-chain perfluoroalkyl acids (PFAAs) including PFHpA, PFHxA, and PFPeA. Interestingly, the overall decomposition percentages were unaffected by pH for 6:2 FTAB, though pH influenced rate constants and half-lives. In PFOA degradation, direct photolysis and reaction with hydrated electrons were presumed mechanisms, excluding the involvement of hydroxyl radicals. The role of superoxide radicals remains uncertain. For 6:2 FTAB, both direct and indirect photolysis were observed, with potential involvement of hydroxyl, superoxide radicals, and/or other reactive oxygen species (ROS). Clarification is needed regarding the role of 𝑒-𝑎𝑞 in the degradation of 6:2 FTAB.}, language = {en} } @misc{AhmedMartienssenBryantetal., author = {Ahmed, Naveed and Martienssen, Marion and Bryant, Isaac Mbir and Vione, Davide and Bruzzoniti, Maria Concetta and Riedel, Ramona}, title = {Investigation on UV Degradation and Mechanism of 6:2 Fluorotelomer Sulfonamide Alkyl Betaine, Based on Model Compound Perfluorooctanoic Acid}, series = {ChemEngineering}, volume = {8}, journal = {ChemEngineering}, number = {2}, issn = {2305-7084}, doi = {10.3390/chemengineering8020032}, language = {en} }