@misc{WenShaikhSteueretal., author = {Wen, Shuyu and Shaikh, Mohd Saif and Steuer, Oliver and Prucnal, Slawomir and Grenzer, J{\"o}rg and H{\"u}bner, Ren{\´e} and Turek, Marcin and Pyszniak, Krzysztof and Reiter, Sebastian and Fischer, Inga Anita and Georgiev, Yordan M. and Helm, Manfred and Wu, Shaoteng and Luo, Jun-Wei and Zhou, Shengqiang and Berenc{\´e}n, Yonder}, title = {Room-temperature extended short-wave infrared GeSn photodetectors realized by ion beam techniques}, series = {Applied Physics Letters}, volume = {123}, journal = {Applied Physics Letters}, number = {8}, issn = {0003-6951}, doi = {10.1063/5.0166799}, pages = {1 -- 7}, abstract = {GeSn alloys hold great promise as high-performance, low-cost, near- and short-wavelength infrared photodetectors with the potential to replace the relatively expensive and currently market-dominant InGaAs- and InSb-based photodetectors. In this Letter, we demonstrate room-temperature GeSn pn photodetectors fabricated by a complementary metal-oxide-semiconductor compatible process, involving Sn and P ion implantation and flash-lamp annealing prior to device fabrication. The fabrication process enables the alloying of Ge with Sn at concentrations up to 4.5\% while maintaining the high-quality single-crystalline structure of the material. This allows us to create Ge0.955Sn0.045 pn photodetectors with a low dark current density of 12.8 mA/cm2 and a relatively high extended responsivity of 0.56 A/W at 1.71 μm. These results pave the way for the implementation of a cost-effective, scalable, and CMOS-compatible short-wavelength infrared detector technology.}, language = {en} } @misc{MaiMarschmeyerPeczeketal., author = {Mai, Christian and Marschmeyer, Steffen and Peczek, Anna and Kroh, Aleksandra and Jose, Josmy and Reiter, Sebastian and Fischer, Inga Anita and Wenger, Christian and Mai, Andreas}, title = {Integration Aspects of Plasmonic TiN-based Nano-Hole-Arrays on Ge Photodetectorsin a 200mm Wafer CMOS Compatible Silicon Technology}, series = {ECS Transactions}, volume = {109}, journal = {ECS Transactions}, number = {4}, issn = {1938-5862}, doi = {10.1149/10904.0035ecst}, pages = {35 -- 46}, abstract = {In this work we present the progress in regard to the integration of a surface plasmon resonance refractive index sensor into a CMOS compatible 200 mm wafer silicon-based technology. Our approach pursues the combination of germanium photodetectors with metallic nanohole arrays. The paper is focused on the technology development to fabricate large area photodetectors based on a modern design concept. In a first iteration we achieved a leakage current density of 82 mA/cm2 at reverse bias of 0.5 V and a maximum optical responsivity of 0.103 A/W measured with TE polarized light at λ = 1310 nm and a reversed bias of 1 V. For the realization of nanohole arrays we used thin Titanium nitride (TiN) layers deposited by a sputtering process. We were able to produce very homogenous TiN layers with a thickness deviation of around 10 \% and RMS of 1.413 nm for 150 nm thick TiN layers.}, language = {en} } @misc{HanReiterSchlipfetal., author = {Han, Weijia and Reiter, Sebastian and Schlipf, Jon and Mai, Christian and Spirito, Davide and Jose, Josmy and Wenger, Christian and Fischer, Inga Anita}, title = {Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence}, series = {Optics Express}, volume = {31}, journal = {Optics Express}, number = {11}, issn = {1094-4087}, doi = {10.1364/OE.481993}, pages = {17389 -- 17407}, abstract = {Titanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. Our systematic simulation-based investigation of the sensitivity of the TiN NHA/SiO2/Si stack under varied conditions reveals that very large sensitivities up to 2305 nm per refractive index unit (nm RIU-1) are predicted when the refractive index of superstrate is similar to that of the SiO2 layer. We analyze in detail how the interplay between plasmonic and photonic resonances such as surface plasmon polaritons (SPPs), localized surface plasmon resonances (LSPRs), Rayleigh Anomalies (RAs), and photonic microcavity modes (Fabry-P{\´e}rot resonances) contributes to this result. This work not only reveals the tunability of TiN nanostructures for plasmonic applications but also paves the way to explore efficient devices for sensing in broad conditions.}, language = {en} } @misc{ReiterHanMaietal., author = {Reiter, Sebastian and Han, Weijia and Mai, Christian and Spirito, Davide and Jose, Josmy and Z{\"o}llner, Marvin Hartwig and Fursenko, Oksana and Schubert, Markus Andreas and Stemmler, Ivo and Wenger, Christian and Fischer, Inga Anita}, title = {Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties}, series = {Plasmonics}, journal = {Plasmonics}, issn = {1557-1963}, doi = {10.1007/s11468-023-01810-3}, pages = {1 -- 13}, language = {en} } @misc{OleynikBerkmannReiteretal., author = {Oleynik, Paul and Berkmann, Fritz and Reiter, Sebastian and Schlipf, Jon and Ratzke, Markus and Yamamoto, Yuji and Fischer, Inga Anita}, title = {Strong Optical Coupling of Lattice Resonances in a Top-down Fabricated Hybrid Metal-Dielectric Al/Si/Ge Metasurface}, series = {Nano Letters}, volume = {24}, journal = {Nano Letters}, number = {10}, issn = {1530-6984}, doi = {10.1021/acs.nanolett.3c05050}, pages = {3142 -- 3149}, abstract = {Optical metasurfaces enable the manipulation of the light-matter interaction in ultrathin layers. Compared with their metal or dielectric counterparts, hybrid metasurfaces resulting from the combination of dielectric and metallic nanostructures can offer increased possibilities for interactions between modes present in the system. Here, we investigate the interaction between lattice resonances in a hybrid metal-dielectric metasurface obtained from a single-step nanofabrication process. Finite-difference time domain simulations show the avoided crossing of the modes appearing in the wavelength-dependent absorptance inside the Ge upon variations in a selected geometry parameter as evidence for strong optical coupling. We find good agreement between the measured and simulated absorptance and reflectance spectra. Our metasurface design can be easily incorporated into a top-down optoelectronic device fabrication process with possible applications ranging from on-chip spectroscopy to sensing.}, language = {en} }