@misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Transition to the ultimate regime in a stochastic model for radiatively driven turbulent convection}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft - BPCPPDYSOE21}, journal = {Verhandlungen der Deutschen Physikalischen Gesellschaft - BPCPPDYSOE21}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Transition to the ultimate regime in a stochasticmodel for thermal convection with internal sources}, pages = {1}, abstract = {It is well established that heat transfer in turbulent Rayleigh-Bénard convection and angular momentum transfer in turbulent Taylor-Couette flow are similar in nature. This similarity manifests itself by isomorphic scaling laws for corresponding flow regimes. However, it is not clear at present if this similarity extends to flows with internal sources and different types of boundary conditions. Internal sources may occur, for example, due to radiative heating in dry or condensation in moist convection, or due to internal wave breaking and mean flow excitation in rotating Taylor-Couette-like flows. In this study, heat transfer in radiatively-driven turbulent Rayleigh-Bénard convection is investigated using the stochastic one-dimensional-turbulence model (ODT). A Boussinesq fluid of Prandtl number 1 is confined between two horizontal adiabatic no-slip walls that are located at z = 0 and H, respectively. The fluid is exposed to constant background gravity that points in vertical (-z) direction. A flow is driven by radiative heating from below yielding the local heating rate Q(z) = (P/l) exp(-z/l), where P is the prescribed mean total heat flux and l the absorption length that controls the thermal boundary layer thickness. ODT resolves all relevant scales of the flow, including molecular-diffusive scales, along a vertical one-dimensional domain, whereas stochastically sampled eddy events represent the effects of turbulent advection. ODT results reproduce and extrapolate available reference experiments of Lepot et al. (Proc. Natl. Acad. Sci. USA, 115, 2018, pp. 8937-8941) and Bouillaut et al. (J. Fluid Mech., 861, 2019, R5) in particular capturing the turbulent transition from the classical to the 'ultimate' regime. For these regimes, the exponent values in N u ∼ Ra^p scaling are found to be p ≈ 0.33 and p ≈ 0.55, respectively, in agreement with measured values. Joint probabilities of turbulent eddy size and location suggest that the regime transition is associated with a suppression of small-scale near-wall turbulent motions. The latter observation is found consistent with recent direct numerical simulations of heat transfer between permeable walls (Kawano et al., J. Fluid Mech., 914, 2021, A13).}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Stochastic modeling of transient boundary layers in high-Rayleigh-number thermal convection, 25th International Congress of Theoretical and Applied Mechanics (ICTAM 20+1)}, pages = {1}, abstract = {One-dimensional turbulence (ODT) modeling is used to investigate the boundary layer in high-Rayleigh-number thermal convection for a notionally infinite horizontal layer of fluid. The model formulation distinguishes between turbulent advection, which is modeled by a stochastic process, and deterministic molecular diffusion to capture relevant vertical transport processes (including counter-gradient fluxes). For this study, statistical homogenization is applied to the two horizontal dimensions so that we use ODT as stand-alone tool. We show that the model yields mean and fluctuation temperature profiles that are in several respects consistent with available reference data. Furthermore, the profile of a surrogate for the fluctuation velocity is reminiscent of canonical wall turbulence.}, language = {en} } @misc{KersteinLignellSchmidtetal., author = {Kerstein, Alan R. and Lignell, David O. and Schmidt, Heiko and Starick, Tommy and Wheeler, Isaac and Behrang, Masoomeh}, title = {Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows}, series = {2021 AIChE Annual Meeting}, journal = {2021 AIChE Annual Meeting}, abstract = {Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations.}, language = {en} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel-Swapping (HiPS) model}, series = {Technische Mechanik}, volume = {43}, journal = {Technische Mechanik}, number = {1}, issn = {0232-3869}, doi = {10.24352/UB.OVGU-2023-044}, pages = {49 -- 58}, abstract = {Turbulent mixing is an omnipresent phenomenon that permanently affects our everyday life. Mixing processes also plays an important role in many industrial applications. The full resolution of all relevant flow scales often poses a major challenge to the numerical simulation and requires a modeling of the small-scale effects. In transported Probability Density Function (PDF) methods, the simplified modeling of the molecular mixing is a known weak point. At this place, the Hierarchical Parcel-Swapping (HiPS) model developed by A.R. Kerstein [J. Stat. Phys. 153, 142-161 (2013)] represents a computationally efficient and novel turbulent mixing model. HiPS simulates the effects of turbulence on time-evolving, diffusive scalar fields. The interpretation of the diffusive scalar fields or a state space as a binary tree structure is an alternative approach compared to existing mixing models. The characteristic feature of HiPS is that every level of the tree corresponds to a specific length and time scale, which is based on turbulence inertial range scaling. The state variables only reside at the base of the tree and are understood as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub-trees at rates determined by turbulent time scales associated with the sub-trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, a standalone HiPS model formulation for the simulation of passive scalar mixing is detailed first. The generated scalar power spectra with forced turbulence shows the known scaling law of Kolmogorov turbulence. Furthermore, results for the PDF of the passive scalar, mean square displacement and scalar dissipation rate are shown and reveal a reasonable agreement with experimental findings. The described possibility to account for variable Schmidt number effects is an important next development step for the HiPS formulation. This enables the incorporation of differential diffusion, which represents an immense advantage compared to the established mixing models. Using a binary structure allows HiPS to satisfy a large number of criteria for a good mixing model. Considering the reduced order and associated computational efficiency, HiPS is an attractive mixing model, which can contribute to an improved representation of the molecular mixing in transported PDF methods.}, language = {en} } @misc{SoniaRichterBrunneretal., author = {Sonia, G. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Lenk, Friedrich and Opitz-Coutureau, J. and Mai, M. and Schmidt, J. and Zeimer, U. and Wang, L. and Baskar, K. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {High energy irradiation effects on AlGaN/GaN HFET devices}, series = {Semiconductor Science and Technology}, volume = {22}, journal = {Semiconductor Science and Technology}, number = {11}, issn = {0268-1242}, doi = {10.1088/0268-1242/22/11/007}, pages = {1220 -- 1224}, abstract = {The effect of proton, carbon, oxygen and krypton irradiation on AlGaN HFET devices has been studied. Irradiation was performed at 68 and 120 MeV with fluences in the range from 1 × 10^7 to 1 × 10^13 cm2 . Before and after irradiation, dc and pulsed I - V characteristics, loadpull and S -parameters of the AlGaN HFET devices were measured. A thick GaN reference layer was characterized by x-ray diffraction, photoluminescence and Hall measurements before and after irradiation. Proton, carbon and oxygen irradiation show no degradation in devices while krypton irradiation shows a small change at a fluence of 1 × 10 10 cm2 in the device characteristics. The device results are correlated with the thick GaN results.}, language = {en} } @misc{LignellLansingerMedinaMendezetal., author = {Lignell, David O. and Lansinger, Victoria B. and Medina M{\´e}ndez, Juan Ali and Klein, Marten and Kerstein, Alan R. and Schmidt, Heiko and Fistler, Marco and Oevermann, Michael}, title = {One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application}, series = {Theoretical and Computational Fluid Dynamics}, volume = {32}, journal = {Theoretical and Computational Fluid Dynamics}, number = {4}, issn = {0935-4964}, doi = {10.1007/s00162-018-0465-1}, pages = {495 -- 520}, abstract = {The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.}, language = {en} } @misc{KleinFreireLignelletal., author = {Klein, Marten and Freire, Livia S. and Lignell, David O. and Kerstein, Alan R. and Schmidt, Heiko}, title = {Ein stochastischer Ansatz zur Modellierung fluktuierender Oberfl{\"a}chenfl{\"u}sse in turbulenten Grenzschichten}, series = {Kurzfassungen der Meteorologentagung DACH}, volume = {2022}, journal = {Kurzfassungen der Meteorologentagung DACH}, publisher = {Copernicus}, doi = {10.5194/dach2022-22}, pages = {1 -- 1}, abstract = {Im Konferenzbeitrag wird auf die Formulierung des stochastischen Modells eingegangen und gezeigt, dass neben Scherspannungen auch Druck-, Coriolis- und Auftriebskr{\"a}fte ber{\"u}cksichtigt werden k{\"o}nnen. Das Modell wird beispielhaft als unabh{\"a}ngiges, numerisches Werkzeug angewendet, um fluktuierende Oberfl{\"a}chenfl{\"u}sse in turbulenten Kanalstr{\"o}mungen sowie stabilen und konvektiven Grenzschichten zu untersuchen. Es werden sowohl glatte, als auch raue bzw. bewachsene (por{\"o}se) Oberfl{\"a}chen betrachtet. Anhand neuer Ergebnisse wird demonstriert, dass der Modellansatz in der Lage ist, Referenzdaten zufriedenstellend zu reproduzieren und extrapolieren. Daneben werden aktuelle Arbeiten zur Kopplung des stochastischen Modellansatzes mit Large-Eddy-Simulationen vorgestellt. Es wird gezeigt, dass die stochastische Modellierung oberfl{\"a}chennaher, subgitterskaliger Schwankungen in der Lage ist, wandnahe Turbulenzspektren zu reproduzieren und den filterbasierten Modellfehler bei ansonsten fester Gitteraufl{\"o}sung zu verringern.}, language = {de} } @inproceedings{JozefikKersteinSchmidt, author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko}, title = {Incorporation of acceleration effects into the One-dimensional-turbulence model, with application to turbulent combustion and shock-turbulence interactions}, series = {15th European Turbulence Conference 2015 August 25-28th, 2015, Delft, The Netherlands}, booktitle = {15th European Turbulence Conference 2015 August 25-28th, 2015, Delft, The Netherlands}, pages = {2}, abstract = {One-dimensional turbulence (ODT) is a stochastic simulation in which 3D turbulence effects are captured on a notional 1D line of sight by introducing instantaneous spatial rearrangements (maps) that represent advection by notional turbulent eddies. These eddy events incorporate the possibility of kinetic-energy changes that are equal and opposite to changes of other forms of energy such as the gravitational potential energy change due to a rearrangement of a vertical density profile. This illustrates that motion aligned with an applied force, in this case gravitation g, can be associated with energy change. Using this principle, we 1) present a model of turbulence interaction with the dilatational acceleration caused by thermal expansion in flames and show results for a turbulent counterflow flame with comparison to DNS and 2) present a model for shock-induced turbulence and show results for mixing width growth in a shock tube with comparison to experiments.}, language = {en} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel Swapping (HiPS) model}, series = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, journal = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, publisher = {Department of Fluid Mechanics, University of Technology and Economics}, address = {Budapest, Hungary}, isbn = {978-963-421-881-4}, pages = {1 -- 7}, language = {en} }