@inproceedings{KersteinGlaweSchmidtetal., author = {Kerstein, Alan R. and Glawe, Christoph and Schmidt, Heiko and Klein, Rupert and Gonzalez-Juez, Esteban D. and Schmidt, Rodney}, title = {Computational modeling of scalar transport and buoyancy effects in turbulent flows using ODTLES}, series = {Bulletin of the American Physical Society}, volume = {57}, booktitle = {Bulletin of the American Physical Society}, number = {17}, language = {en} } @inproceedings{RistauMeierEgbersetal., author = {Ristau, R. and Meier, M. and Egbers, Christoph and Schmidt, J.-R. and Poppe, T.}, title = {Partikelbeladene Str{\"o}mungen : Simulation und Messtechnik}, language = {de} } @inproceedings{BergCordsenHeueretal., author = {Berg, R. and Cordsen, J. and Heuer, J. and Nolte, J{\"o}rg and Oestmann, B. and Sander, M. and Schmidt, Heiko and Sch{\"o}n, F. and Schr{\"o}der-Preikschat, Wolfgang}, title = {The PEACE Family of Distributed Operating Systems}, language = {en} } @inproceedings{BergCordsenHastedtetal., author = {Berg, R. and Cordsen, J. and Hastedt, Ch. and Heuer, J. and Nolte, J{\"o}rg and Sander, M. and Schmidt, Heiko and Sch{\"o}n, F. and Schr{\"o}der-Preikschat, Wolfgang}, title = {Making Massively Parallel Systems Work}, language = {en} } @misc{SchmidtKersteinNedelecetal., author = {Schmidt, Heiko and Kerstein, Alan R. and N{\´e}d{\´e}lec, Renaud and Wunsch, Scott and Sayler, Ben J.}, title = {Numerical study of radiatively induced entrainment}, series = {Journal of Physics: Conference Series}, volume = {318}, journal = {Journal of Physics: Conference Series}, issn = {1742-6588}, doi = {10.1088/1742-6596/318/7/072017}, pages = {072017}, language = {en} } @misc{SchmidtKersteinNedelecetal., author = {Schmidt, Heiko and Kerstein, Alan R. and N{\´e}d{\´e}lec, Renaud and Wunsch, Scott and Sayler, Ben J.}, title = {Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment}, series = {Theoretical Computational Fluid Dynamics}, journal = {Theoretical Computational Fluid Dynamics}, issn = {1432-2250}, doi = {10.1007/s00162-012-0288-4}, pages = {19}, language = {en} } @inproceedings{SchmidtSchulzKerstein, author = {Schmidt, Heiko and Schulz, Falko T. and Kerstein, Alan R.}, title = {Toward modeling of multi- phase flow patterns using a combination of level sets and one-dimensional turbulence}, series = {EGU General Assembly 2011, Vienna, Austria, 03 - 08 April 2011}, booktitle = {EGU General Assembly 2011, Vienna, Austria, 03 - 08 April 2011}, language = {en} } @misc{OevermannSchmidtKerstein, author = {Oevermann, Michael and Schmidt, Heiko and Kerstein, Alan R.}, title = {HCCI combustion modeling using detailed chemistry coupled to LEM-based advection}, series = {Combustion and Flame}, volume = {155}, journal = {Combustion and Flame}, number = {3}, issn = {1556-2921}, pages = {370 -- 379}, language = {en} } @misc{SchulzGlaweSchmidtetal., author = {Schulz, Falko T. and Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R.}, title = {Toward modeling of CO2 multi-phase flow patterns using a stochastic multi-scale approach}, series = {Environmental Earth Sciences}, volume = {70}, journal = {Environmental Earth Sciences}, number = {8}, issn = {1866-6299}, doi = {10.1007/s12665-013-2461-5}, pages = {3739 -- 3748}, language = {en} } @inproceedings{SchulzGlaweSchmidtetal., author = {Schulz, Falko T. and Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R.}, title = {Liquid jet simulation using one-dimensional turbulence}, series = {14th European Turbulence Conference, Lyon, France, September 1-4, 2013}, booktitle = {14th European Turbulence Conference, Lyon, France, September 1-4, 2013}, language = {en} } @inproceedings{SchulzGlaweKersteinetal., author = {Schulz, Falko T. and Glawe, Christoph and Kerstein, Alan R. and Schmidt, Heiko}, title = {Toward modeling of supercritical CO2 flow using map-based advection}, series = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, booktitle = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, language = {en} } @inproceedings{SchmidtKerstein, author = {Schmidt, Heiko and Kerstein, Alan R.}, title = {Modeling of wind-field fluctuations using the one-dimensional-turbulence model}, series = {The Science of Making Torque from Wind, Oldenburg, Germany, October 9-11, 2012 Oldenburg Germany}, booktitle = {The Science of Making Torque from Wind, Oldenburg, Germany, October 9-11, 2012 Oldenburg Germany}, language = {en} } @inproceedings{SchmidtKerstein, author = {Schmidt, Heiko and Kerstein, Alan R.}, title = {Towards a multiscale strategy for modeling high-pressure flow of carbon dioxide for sequestration}, series = {Geoenergy 2010, Potsdam, Germany}, booktitle = {Geoenergy 2010, Potsdam, Germany}, pages = {2}, language = {en} } @inproceedings{NedelecSchmidtWunschetal., author = {N{\´e}d{\´e}lec, Renaud and Schmidt, Heiko and Wunsch, Scott and Sayler, Ben J. and Kerstein, Alan R.}, title = {Comparison of Entrainment Rates from a Tank Experiment with Results Us- ing the One-Dimensional-Turbulence Model}, series = {EGU General Assembly 2010, held in Vienna, Austria, 02 - 07 May 2010}, booktitle = {EGU General Assembly 2010, held in Vienna, Austria, 02 - 07 May 2010}, language = {en} } @inproceedings{OevermannSchmidtKerstein, author = {Oevermann, Michael and Schmidt, Heiko and Kerstein, Alan R.}, title = {Linear eddy modeling of n-heptane combustion in HCCI engines}, series = {12th SIAM International Conference on Numerical Combustion}, booktitle = {12th SIAM International Conference on Numerical Combustion}, pages = {S. 20}, language = {en} } @misc{KersteinSchmidtNedelecetal., author = {Kerstein, Alan R. and Schmidt, Heiko and N{\´e}d{\´e}lec, Renaud and Wunsch, Scott and Sayler, Ben J.}, title = {Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment}, series = {Bulletin of the American Physical Society Dynamics}, volume = {55}, journal = {Bulletin of the American Physical Society Dynamics}, number = {16}, language = {en} } @misc{SoniaRichterBrunneretal., author = {Sonia, G. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Mai, M. and Lenk, Friedrich and Bundesmann, J. and Pensl, G. and Schmidt, J. and Zeimer, U. and Wang, L. and Baskar, K. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {2 MeV ion irradiation effects on AlGaN/GaN HFET devices}, series = {Solid-State Electronics}, volume = {52}, journal = {Solid-State Electronics}, number = {7}, issn = {0038-1101}, pages = {1011 -- 1017}, abstract = {AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with 2 MeV protons, carbon, oxygen, iron and krypton ions with fluences ranging from 1 × 109 cm-2 to 1 × 1013 cm-2. DC, pulsed I-V characteristics, loadpull and S-parameters of the AlGaN HFET devices were measured before and after irradiation. In parallel, a thick GaN reference layer was also irradiated with the same ions and was characterized by X-ray diffraction, photoluminescence, Hall measurements before and after irradiation. Small changes in the device performance were observed after irradiation with carbon and oxygen at a fluence of 5 × 1010 cm-2. Remarkable changes in device characteristics were seen at a fluence of 1 × 1012 cm-2 for carbon, oxygen, iron and krypton irradiation. Similarly, remarkable changes were also observed in the GaN layer for irradiations with fluence of 1 × 1012 cm-2. The results found on devices and on the GaN layer were compared and correlated.}, language = {en} } @misc{GnanapragasamRichterBrunneretal., author = {Gnanapragasam, S. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Mai, M. and Lenk, Friedrich and Opitz-Coutureau, J. and Pensl, G. and Schmidt, J. and Zeimer, U. and Wang, L. and Krishnan, B. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {Irradiation effects on AlGaN HFET devices and GaN layers}, series = {Journal of Materials Science: Materials in Electronics}, volume = {19}, journal = {Journal of Materials Science: Materials in Electronics}, number = {1}, issn = {1573-482X}, doi = {10.1007/s10854-008-9589-1}, pages = {64 -- 67}, abstract = {AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with protons as well as carbon, oxygen, iron and krypton ions of high (68 and 120 MeV) and low (2 MeV) energy with fluences in the range from 1x107 to 1x1013 cm-2. High energy irradiation with protons, carbon and oxygen produced no degradation in devices while krypton irradiation at the fluence of 1x1010 cm-2 resulted in a small reduction of 2\% in the transconductance. Similarly, for GaN samples irradiated with protons, carbon and oxygen at high energy no changes were seen by XRD, PL and Hall effect, while changes in lattice constant and a reduction in PL intensity were observed after irradiation with high energy krypton. Low energy irradiation with carbon and oxygen at a fluence of 5x1010 cm-2 results in small change in the device performance while remarkable changes in device characteristics are seen at a fluence of 1x1012 cm-2 for carbon, oxygen, iron and krypton irradiation. Similarly changes are also observed by XRD, PL and Hall effect for the thick GaN layer irradiated at the fluence of 1x1012 cm-2. The device results and GaN layer properties are strongly correlated.}, language = {en} } @inproceedings{MovagharLinneOevermannetal., author = {Movaghar, Amirreza and Linne, Mark and Oevermann, Michael and Meiselbach, Falko T. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Numerical study of liquid breakup at the surface of turbulent liquid jets using One-Dimensional Turbulence}, series = {26th Annual Conference on Liquid Atomization and Spray Systems, ILASS, proceedings of the Conference, Bremen, Germany, 08.09.2014 - 10.09.2014}, booktitle = {26th Annual Conference on Liquid Atomization and Spray Systems, ILASS, proceedings of the Conference, Bremen, Germany, 08.09.2014 - 10.09.2014}, address = {Bremen}, isbn = {978-3-00-047070-7}, abstract = {This paper presents an investigation of primary breakup of planar turbulent liquid jets and breakup properties at the surface of turbulent jets in still air at standard conditions. Numerical simulations are carried out for jet exit Reynolds number 23000 and Weber numbers in the range [102-107]. Due to the limitation of direct numerical simulation (DNS) to moderate Reynolds numbers, a stochastic 1D ansatz based on the one-dimensional turbulence (ODT) model is used to simulate a planar liquid jet with a high lateral resolution. ODT permits an affordable high resolution of interface and single-phase property gradients which are key for understanding the local behavior. ODT is a stochastic model simulating turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. The most relevant mechanisms that influence the primary breakup of liquid jets are found to be represented accurately based on comparisons to experiments and correlations reported in the literature. Building on this finding, future work will focus on the statistics of droplets generated by primary breakup, both to investigate their relationship to breakup mechanisms and to provide input to models of secondary breakup and subsequent spray evolution.}, language = {en} } @misc{SchmidtGlaweJozefiketal., author = {Schmidt, Heiko and Glawe, Christoph and Jozefik, Zoltan and Meiselbach, Falko T. and Kerstein, Alan R.}, title = {On the benefits of ODT-based stochastic turbulence modeling}, series = {Proceedings in applied mathematics and mechanics : PAMM}, volume = {14}, journal = {Proceedings in applied mathematics and mechanics : PAMM}, number = {1}, issn = {1617-7061}, pages = {655 -- 656}, abstract = {We summarize the group's progress in applying, analyzing, and improving ODT and ODT-based stochastic turbulence models like ODTLES. Compared to DNS these models span a wider range of scales while compared to RANS/LES (i) the molecular effects are retained and (ii) no assumption of scale separation is made. In this regard ODTLES has more properties of DNS than of standard LES.}, language = {en} } @incollection{JozefikKersteinSchmidt, author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko}, title = {Towards a compressible reactive multiscale approach based on One-Dimensional Turbulence}, series = {Active Flow and Combustion Control 2014}, booktitle = {Active Flow and Combustion Control 2014}, editor = {King, Rudibert}, publisher = {Springer}, address = {Switzerland}, isbn = {978-3-319-11967-0}, pages = {197 -- 211}, abstract = {Due to its huge complexity, progress in understanding and prediction of turbulent combustion is extremely challenging. In principle, progress is possible without improved understanding through direct numerical solution (DNS) of the exact governing equations, but the wide range of spatial and temporal scales often renders it unaffordable, so coarse-grained 3D numerical simulations with subgrid parameterization of the unresolved scales are often used. This is especially problematic for multi-physics regimes such as reacting flows because much of the complexity is thus relegated to the unresolved small scales. One-Dimensional Turbulence (ODT) is an alternative stochastic model for turbulent flow simulation. It operates on a 1D spatial domain via time advancing individual flow realizations rather than ensemble-averaged quantities. The lack of spatial and temporal filtering on this 1D domain enables a physically sound multiscale treatment which is especially useful for combustion applications where, e.g., sharp interfaces or small chemical time scales have to be resolved. Lignell et al. recently introduced an efficient ODT implementation using an adaptive mesh. As all existing ODT versions it operates in the incompressible regime and thus cannot handle compressibility effects and their interactions with turbulence and chemistry which complicate the physical picture even further. In this paper we make a first step toward an extension of the ODT methodology towards an efficient compressible implementation. The necessary algorithmic changes are highlighted and preliminary results for a standard non-reactive shock tube problem as well as for a turbulent reactive case illustrate the potential of the extended approach.}, language = {en} } @inproceedings{StollbergNamangoSchmidtetal., author = {Stollberg, Christian and Namango, Saul and Schmidt, M. and Pohl, R. and Ay, Peter}, title = {Preparation of plastics for automatic identification as the first step in recycling of automotive parts}, series = {Proceedings of the XXII International Mineral Processing Congress, Cape Town, South Africa, 29 September - 3 October 2003}, booktitle = {Proceedings of the XXII International Mineral Processing Congress, Cape Town, South Africa, 29 September - 3 October 2003}, publisher = {South African Institute of Mining \& Meta}, address = {Marshalltown, South Africa}, language = {en} } @misc{JahnBlaudeckBaumannetal., author = {Jahn, Stephan F. and Blaudeck, Thomas and Baumann, Reinhard R. and Jakob, Alexander and Ecorchard, Petra and R{\"u}ffer, Tobias and Lang, Heinrich and Schmidt, Peer}, title = {Inkjet Printing of Conductive Silver Patterns by Using the First Aqueous Particle-Free MOD Ink without Additional Stabilizing Ligands}, series = {Chemistry of Materials}, volume = {22}, journal = {Chemistry of Materials}, number = {10}, issn = {1520-5002}, doi = {10.1021/cm9036428}, pages = {3067 -- 3071}, abstract = {The chemical and physical properties of [AgO2C(CH2OCH2)3H] (3) and its use as an aqueous, ligand-free MOD ink (MOD = metal-organic decomposition) for piezo inkjet printing is discussed. The printed, thermal, or photochemical sintered silver features are electrically conductive on glass (2.7 × 107 S m-1) and PET (PET = polyethylene terephthalate) substrates (1.1 × 107 S m-1) corresponding to 43\% and 18\% of the bulk silver conductivity. Conducted tape tests show the suitability of the ink for particularly polymer substrates. TG-MS studies demonstrate a two-step decomposition for the conversion of 3 to elemental silver. The structure of 3 in the solid state was determined by single X-ray structure determination.}, language = {en} } @misc{JahnJakobBlaudecketal., author = {Jahn, Stephan F. and Jakob, Alexander and Blaudeck, Thomas and Schmidt, Peer and Lang, Heinrich and Baumann, Reinhard R.}, title = {Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands}, series = {Thin Solid Films}, volume = {518}, journal = {Thin Solid Films}, number = {12}, issn = {0040-6090}, doi = {10.1016/j.tsf.2010.01.030}, pages = {3218 -- 3222}, abstract = {The use of silver(I)-2-[2-(2-methoxyethoxy)ethoxy]acetate, [AgO2C(CH2OCH2)3H], and its application as an aqueous metal-organic decomposition (MOD) inkjet ink is reported. The chemical and physical properties of the silver carboxylate and the ink formulated thereof are discussed. The ink meets all requirements of piezo driven inkjet printing. The printed features were converted into electrically conducting silver patterns by thermal or photo-thermal treatment. The conversion of [AgO2C(CH2OCH2)3H] to elemental silver follows a two-step decomposition as demonstrated by thermogravimetry-mass spectrometry (TG-MS) measurements. The measured conductivities of the printed features on glass and polyethylene-terephthalate (PET) are 2.7 × 107 S m-1 and 1.1 × 107 S m-1, respectively, which correspond to 43\% (glass) and 18\% (PET) of the bulk silver conductivity.}, language = {en} } @misc{JozefikKersteinSchmidtetal., author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko and Lyra, Sgouria and Kolla, Hemanth and Chen, Jackie H.}, title = {One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS}, series = {Combustion and Flame}, volume = {162}, journal = {Combustion and Flame}, number = {8}, issn = {0010-2180}, doi = {10.1016/j.combustflame.2015.05.010}, pages = {2999 -- 3015}, abstract = {The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-mean-square (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.}, language = {en} } @misc{JozefikKersteinSchmidt, author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko}, title = {Simulation of shock-turbulence interaction in non-reactive flow and in turbulent deflagration and detonation regimes using one-dimensional turbulence}, series = {Combustion and Flame}, volume = {164}, journal = {Combustion and Flame}, issn = {0010-2180}, doi = {10.1016/j.combustflame.2015.10.035}, pages = {53 -- 67}, abstract = {The one-dimensional turbulence (ODT) methodology is extended to include an efficient compressible implementation and a model for capturing shock-induced turbulence is presented. Lignell et al. recently introduced a Lagrangian ODT implementation using an adaptive mesh. As the code operates in the incompressible regime (apart from constant-pressure dilatation) it cannot handle compressibility effects and their interactions with turbulence and chemistry. The necessary algorithmic changes to include compressibility effects are highlighted and our model for capturing shock- turbulence interaction is presented. To validate our compressible solver, we compare results for the Sod shock tube problem against a finite volume Riemannsolver. To validate our model for shock-turbulence interaction, we present comparisons for a non-reactive and a reactive case. First, results of a shock traveling from light (air) to heavy (SF6) with recheck have been simulated to match mixing width growth data of experiments and turbulent kinetic energy results from LES.Then, for one-step chemistry calibrated to represent an acetylene/airmixture we simulate the interaction of a shock wave with an expanding flame front, and compare results with 2D simulation (2D-sim) data for flame brush formation and ensuing deflagration-to-detonation transitions (DDT). Results for the Sod shock tube comparison show that the shock speed and profile are captured accurately. Results for the non-reactive shock-recheck problem show that interface growth at all simulated Mach numbers is captured accurately and that the turbulent kinetic energy agrees in order of magnitude with LES data. The reactive shock tube results show that the flame brush thickness compares well to 2D-sim data and that the approximate location and timing of the DDT can be captured. The known sensitivity of DDT characteristics to details of individual flow realizations, seen also in ODT, implies that model agreement can be quantified only by comparing flow ensembles, which are presently unavailable other than in an ODT run-to-run sensitivity study that is reported herein.}, language = {en} } @misc{GlaweSchmidtKersteinetal., author = {Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R. and Klein, Rupert}, title = {XLES Part I: Introduction to Extended Large Eddy Simulation}, series = {arXiv.org}, journal = {arXiv.org}, pages = {38}, abstract = {Direct numerical simulation (DNS), mostly used in fundamental turbulence research, is limited to low turbulent intensities due the current and future computer resources. Standard turbulence models, like RaNS (Reynolds averaged Navier-Stokes) and LES (Large Eddy Simulation), are applied to flows in engineering, but they miss small scale effects, which are frequently of importance, see e.g. the whole area of reactive flows, flows with apparent Prandtl or Schmidt number effects, or even wall bounded flows. A recent alternative to these standard approaches is the one-dimensional turbulence (ODT) model, which is limited to 1D sub-domains. In two papers we will provide a generalized filter strategy, called XLES (extended LES), including a formal theory (part I) and one special approach in the XLES family of models, called ODTLES (in part II (see Glawe et al. (2015))). ODTLES uses an ODT sub-grid model to describe all turbulent scales not represented by XLES, which leaves the larger scales to be simulated in 3D. This allows a turbulence modeling approach with a 3D resolution mainly independent of the turbulent intensity. Thus ODTLES is able to compute highly turbulent flows in domains of moderate complexity affordably and including the full range of turbulent and diffusive scales. The convergence of XLES to DNS is shown and the unconventional XLES advection approach is investigated in basic numerical tests. In part II, highly turbulent channel and duct flow results are discussed and show the future potential of XLES and ODTLES.}, language = {en} } @misc{ChunSchmidtKucketal., author = {Chun, K. R. Julian and Schmidt, Boris and Kuck, Karl-Heinz and Andresen, Dietrich and Willems, Stefan and Spitzer, Stefan G. and Hoffmann, Ellen and Schumacher, Burghard and Eckardt, Lars and Seidl, Karlheinz and J{\"u}nger, Claus and Horack, Martin and Brachmann, Johannes and Senges, Jochen}, title = {Catheter ablation of atrial fibrillation in the young}, series = {Clinical Research in Cardiology}, volume = {102}, journal = {Clinical Research in Cardiology}, number = {6}, issn = {1861-0684}, doi = {10.1007/s00392-013-0553-6}, pages = {459 -- 468}, language = {en} } @misc{EfimovaVargaMatuscheketal., author = {Efimova, Anastasia and Varga, Janos and Matuschek, Georg and Saraji-Bozorgzad, Mohammad R. and Denner, Thomas and Zimmermann, Ralf and Schmidt, Peer}, title = {Thermal Resilience of Imidazolium-Based Ionic Liquids—Studies on Short- and Long-Term Thermal Stability and Decomposition Mechanism of 1-Alkyl-3-methylimidazolium Halides by Thermal Analysis and Single-Photon Ionization Time-of-Flight Mass Spectrometry}, series = {Journal of Physical Chemistry B}, volume = {122}, journal = {Journal of Physical Chemistry B}, number = {37}, doi = {10.1021/acs.jpcb.8b06416}, pages = {8738 -- 8749}, abstract = {Ionic liquids are often considered as green alternatives of volatile organic solvents. The thermal behavior of the ionic liquids is relevant for a number of emerging large-scale applications at elevated temperature. Knowledge about the degradation products is indispensable for treatment and recycling of the used ionic liquids. The objective of this paper was an investigation of the short- and long-term stability of several 1-alkyl-3-methylimidazolium halides, determination of the degradation products, and the elucidation of their decomposition patterns and structure-stability relations. Short-term stability and mechanism of thermal degradation were investigated by a self-developed, innovative thermal analysis single-photon ionization time-of-flight mass spectrometry device with Skimmer coupling. The applied technology provides real-time monitoring of the forming species and allows tracing their change during the course of the decomposition. Therein, the almost fragment-free soft ionization with vacuum ultraviolet photons plays a crucial role. We have detected unfragmented molecules whose formation was only assumed by electron ionization. Nevertheless, the main decomposition products of the selected ionic liquids were alkyl imidazoles, alkenes, alkyl halides, and hydrogen halides. From the decomposition products, we have deduced the fragmentation patterns and discussed their interrelation with the length of the alkyl chain and the type of the halide anion. Our results did not suggest the evaporation of the investigated ionic liquids prior to their decomposition under atmospheric conditions. Long-term thermal stability and applicability were determined based on thermogravimetric analysis evaluated with a kinetic model. Thus, the time-dependent maximum operation temperature (MOT) for the respective ionic liquids has been calculated. As a rule, the short-term stability overestimates the long-term decomposition temperatures; the calculated MOT are significantly lower (at least 100 K) than the standardly obtained decomposition temperatures.}, language = {en} } @misc{KleinKersteinSchmidt, author = {Klein, Marten and Kerstein, Alan R. and Schmidt, Heiko}, title = {Stochastic modeling of transient boundary layers in high-Rayleigh-number thermal convection}, series = {25th International Congress of Theoretical and Applied Mechanics (ICTAM 20+1)}, journal = {25th International Congress of Theoretical and Applied Mechanics (ICTAM 20+1)}, pages = {2}, abstract = {One-dimensional turbulence (ODT) modeling is used to investigate the boundary layer in high-Rayleigh-number thermal convection for a notionally infinite horizontal layer of fluid. The model formulation distinguishes between turbulent advection, which is modeled by a stochastic process, and deterministic molecular diffusion to capture relevant vertical transport processes (including counter-gradient fluxes). For this study, statistical homogenization is applied to the two horizontal dimensions so that we use ODT as stand-alone tool. We show that the model yields mean and fluctuation temperature profiles that are in several respects consistent with available reference data. Furthermore, the profile of a surrogate for the fluctuation velocity is reminiscent of canonical wall turbulence.}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Transition to the ultimate regime in a stochastic model for radiatively driven turbulent convection}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft - BPCPPDYSOE21}, journal = {Verhandlungen der Deutschen Physikalischen Gesellschaft - BPCPPDYSOE21}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Transition to the ultimate regime in a stochasticmodel for thermal convection with internal sources}, pages = {1}, abstract = {It is well established that heat transfer in turbulent Rayleigh-Bénard convection and angular momentum transfer in turbulent Taylor-Couette flow are similar in nature. This similarity manifests itself by isomorphic scaling laws for corresponding flow regimes. However, it is not clear at present if this similarity extends to flows with internal sources and different types of boundary conditions. Internal sources may occur, for example, due to radiative heating in dry or condensation in moist convection, or due to internal wave breaking and mean flow excitation in rotating Taylor-Couette-like flows. In this study, heat transfer in radiatively-driven turbulent Rayleigh-Bénard convection is investigated using the stochastic one-dimensional-turbulence model (ODT). A Boussinesq fluid of Prandtl number 1 is confined between two horizontal adiabatic no-slip walls that are located at z = 0 and H, respectively. The fluid is exposed to constant background gravity that points in vertical (-z) direction. A flow is driven by radiative heating from below yielding the local heating rate Q(z) = (P/l) exp(-z/l), where P is the prescribed mean total heat flux and l the absorption length that controls the thermal boundary layer thickness. ODT resolves all relevant scales of the flow, including molecular-diffusive scales, along a vertical one-dimensional domain, whereas stochastically sampled eddy events represent the effects of turbulent advection. ODT results reproduce and extrapolate available reference experiments of Lepot et al. (Proc. Natl. Acad. Sci. USA, 115, 2018, pp. 8937-8941) and Bouillaut et al. (J. Fluid Mech., 861, 2019, R5) in particular capturing the turbulent transition from the classical to the 'ultimate' regime. For these regimes, the exponent values in N u ∼ Ra^p scaling are found to be p ≈ 0.33 and p ≈ 0.55, respectively, in agreement with measured values. Joint probabilities of turbulent eddy size and location suggest that the regime transition is associated with a suppression of small-scale near-wall turbulent motions. The latter observation is found consistent with recent direct numerical simulations of heat transfer between permeable walls (Kawano et al., J. Fluid Mech., 914, 2021, A13).}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Stochastic modeling of transient boundary layers in high-Rayleigh-number thermal convection, 25th International Congress of Theoretical and Applied Mechanics (ICTAM 20+1)}, pages = {1}, abstract = {One-dimensional turbulence (ODT) modeling is used to investigate the boundary layer in high-Rayleigh-number thermal convection for a notionally infinite horizontal layer of fluid. The model formulation distinguishes between turbulent advection, which is modeled by a stochastic process, and deterministic molecular diffusion to capture relevant vertical transport processes (including counter-gradient fluxes). For this study, statistical homogenization is applied to the two horizontal dimensions so that we use ODT as stand-alone tool. We show that the model yields mean and fluctuation temperature profiles that are in several respects consistent with available reference data. Furthermore, the profile of a surrogate for the fluctuation velocity is reminiscent of canonical wall turbulence.}, language = {en} } @misc{KersteinLignellSchmidtetal., author = {Kerstein, Alan R. and Lignell, David O. and Schmidt, Heiko and Starick, Tommy and Wheeler, Isaac and Behrang, Masoomeh}, title = {Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows}, series = {2021 AIChE Annual Meeting}, journal = {2021 AIChE Annual Meeting}, abstract = {Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations.}, language = {en} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel-Swapping (HiPS) model}, series = {Technische Mechanik}, volume = {43}, journal = {Technische Mechanik}, number = {1}, issn = {0232-3869}, doi = {10.24352/UB.OVGU-2023-044}, pages = {49 -- 58}, abstract = {Turbulent mixing is an omnipresent phenomenon that permanently affects our everyday life. Mixing processes also plays an important role in many industrial applications. The full resolution of all relevant flow scales often poses a major challenge to the numerical simulation and requires a modeling of the small-scale effects. In transported Probability Density Function (PDF) methods, the simplified modeling of the molecular mixing is a known weak point. At this place, the Hierarchical Parcel-Swapping (HiPS) model developed by A.R. Kerstein [J. Stat. Phys. 153, 142-161 (2013)] represents a computationally efficient and novel turbulent mixing model. HiPS simulates the effects of turbulence on time-evolving, diffusive scalar fields. The interpretation of the diffusive scalar fields or a state space as a binary tree structure is an alternative approach compared to existing mixing models. The characteristic feature of HiPS is that every level of the tree corresponds to a specific length and time scale, which is based on turbulence inertial range scaling. The state variables only reside at the base of the tree and are understood as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub-trees at rates determined by turbulent time scales associated with the sub-trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, a standalone HiPS model formulation for the simulation of passive scalar mixing is detailed first. The generated scalar power spectra with forced turbulence shows the known scaling law of Kolmogorov turbulence. Furthermore, results for the PDF of the passive scalar, mean square displacement and scalar dissipation rate are shown and reveal a reasonable agreement with experimental findings. The described possibility to account for variable Schmidt number effects is an important next development step for the HiPS formulation. This enables the incorporation of differential diffusion, which represents an immense advantage compared to the established mixing models. Using a binary structure allows HiPS to satisfy a large number of criteria for a good mixing model. Considering the reduced order and associated computational efficiency, HiPS is an attractive mixing model, which can contribute to an improved representation of the molecular mixing in transported PDF methods.}, language = {en} } @misc{SoniaRichterBrunneretal., author = {Sonia, G. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Lenk, Friedrich and Opitz-Coutureau, J. and Mai, M. and Schmidt, J. and Zeimer, U. and Wang, L. and Baskar, K. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {High energy irradiation effects on AlGaN/GaN HFET devices}, series = {Semiconductor Science and Technology}, volume = {22}, journal = {Semiconductor Science and Technology}, number = {11}, issn = {0268-1242}, doi = {10.1088/0268-1242/22/11/007}, pages = {1220 -- 1224}, abstract = {The effect of proton, carbon, oxygen and krypton irradiation on AlGaN HFET devices has been studied. Irradiation was performed at 68 and 120 MeV with fluences in the range from 1 × 10^7 to 1 × 10^13 cm2 . Before and after irradiation, dc and pulsed I - V characteristics, loadpull and S -parameters of the AlGaN HFET devices were measured. A thick GaN reference layer was characterized by x-ray diffraction, photoluminescence and Hall measurements before and after irradiation. Proton, carbon and oxygen irradiation show no degradation in devices while krypton irradiation shows a small change at a fluence of 1 × 10 10 cm2 in the device characteristics. The device results are correlated with the thick GaN results.}, language = {en} } @misc{LignellLansingerMedinaMendezetal., author = {Lignell, David O. and Lansinger, Victoria B. and Medina M{\´e}ndez, Juan Ali and Klein, Marten and Kerstein, Alan R. and Schmidt, Heiko and Fistler, Marco and Oevermann, Michael}, title = {One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application}, series = {Theoretical and Computational Fluid Dynamics}, volume = {32}, journal = {Theoretical and Computational Fluid Dynamics}, number = {4}, issn = {0935-4964}, doi = {10.1007/s00162-018-0465-1}, pages = {495 -- 520}, abstract = {The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects.}, language = {en} } @misc{KleinFreireLignelletal., author = {Klein, Marten and Freire, Livia S. and Lignell, David O. and Kerstein, Alan R. and Schmidt, Heiko}, title = {Ein stochastischer Ansatz zur Modellierung fluktuierender Oberfl{\"a}chenfl{\"u}sse in turbulenten Grenzschichten}, series = {Kurzfassungen der Meteorologentagung DACH}, volume = {2022}, journal = {Kurzfassungen der Meteorologentagung DACH}, publisher = {Copernicus}, doi = {10.5194/dach2022-22}, pages = {1 -- 1}, abstract = {Im Konferenzbeitrag wird auf die Formulierung des stochastischen Modells eingegangen und gezeigt, dass neben Scherspannungen auch Druck-, Coriolis- und Auftriebskr{\"a}fte ber{\"u}cksichtigt werden k{\"o}nnen. Das Modell wird beispielhaft als unabh{\"a}ngiges, numerisches Werkzeug angewendet, um fluktuierende Oberfl{\"a}chenfl{\"u}sse in turbulenten Kanalstr{\"o}mungen sowie stabilen und konvektiven Grenzschichten zu untersuchen. Es werden sowohl glatte, als auch raue bzw. bewachsene (por{\"o}se) Oberfl{\"a}chen betrachtet. Anhand neuer Ergebnisse wird demonstriert, dass der Modellansatz in der Lage ist, Referenzdaten zufriedenstellend zu reproduzieren und extrapolieren. Daneben werden aktuelle Arbeiten zur Kopplung des stochastischen Modellansatzes mit Large-Eddy-Simulationen vorgestellt. Es wird gezeigt, dass die stochastische Modellierung oberfl{\"a}chennaher, subgitterskaliger Schwankungen in der Lage ist, wandnahe Turbulenzspektren zu reproduzieren und den filterbasierten Modellfehler bei ansonsten fester Gitteraufl{\"o}sung zu verringern.}, language = {de} } @inproceedings{JozefikKersteinSchmidt, author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko}, title = {Incorporation of acceleration effects into the One-dimensional-turbulence model, with application to turbulent combustion and shock-turbulence interactions}, series = {15th European Turbulence Conference 2015 August 25-28th, 2015, Delft, The Netherlands}, booktitle = {15th European Turbulence Conference 2015 August 25-28th, 2015, Delft, The Netherlands}, pages = {2}, abstract = {One-dimensional turbulence (ODT) is a stochastic simulation in which 3D turbulence effects are captured on a notional 1D line of sight by introducing instantaneous spatial rearrangements (maps) that represent advection by notional turbulent eddies. These eddy events incorporate the possibility of kinetic-energy changes that are equal and opposite to changes of other forms of energy such as the gravitational potential energy change due to a rearrangement of a vertical density profile. This illustrates that motion aligned with an applied force, in this case gravitation g, can be associated with energy change. Using this principle, we 1) present a model of turbulence interaction with the dilatational acceleration caused by thermal expansion in flames and show results for a turbulent counterflow flame with comparison to DNS and 2) present a model for shock-induced turbulence and show results for mixing width growth in a shock tube with comparison to experiments.}, language = {en} } @misc{StarickBehrangLignelletal., author = {Starick, Tommy and Behrang, Masoomeh and Lignell, David O. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Turbulent mixing simulation using the Hierarchical Parcel Swapping (HiPS) model}, series = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, journal = {Proceedings of the Conference on Modelling Fluid Flow (CMFF'22)}, publisher = {Department of Fluid Mechanics, University of Technology and Economics}, address = {Budapest, Hungary}, isbn = {978-963-421-881-4}, pages = {1 -- 7}, language = {en} } @inproceedings{GlaweSchulzGonzalezJuezetal., author = {Glawe, Christoph and Schulz, Falko T. and Gonzalez-Juez, Esteban D. and Schmidt, Heiko and Kerstein, Alan R.}, title = {ODTLES Simulations of Turbulent Flows through Heated Channels and Ducts}, series = {8th International Symposium on turbulence and shear flow phenomena (TSFP8), 28-30 August 2013, Poitiers, France, vol. 2}, booktitle = {8th International Symposium on turbulence and shear flow phenomena (TSFP8), 28-30 August 2013, Poitiers, France, vol. 2}, pages = {1 -- 6}, abstract = {A widely occurring problem in fluid dynamics either in engineering or e.g. hydrology is the turbulent transport through channels and ducts. ODTLES, a stochastic based multi-scale and multi-dimensional model, is a promising tool to describe these flows even including scalar proper- ties like temperature. We are quantifying the ability of ODTLES to describe the heated channel flow with respect to the Prandtl number and the flow through squared ducts with respect to the Reynolds number.}, language = {en} } @inproceedings{GlaweSchmidtKerstein, author = {Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R.}, title = {ODTLES: A Multi-scale Ansatz for highly turbulent flows}, series = {15 The European turbulence conference, 25-28 august, 2015, Delft, The Netherland}, booktitle = {15 The European turbulence conference, 25-28 august, 2015, Delft, The Netherland}, pages = {2}, abstract = {We use ODTLES, a multi-dimensional extension of the One-Dimensional-Turbulence model (ODT). ODT describes turbulent advection on a 1D sub-domain using a stochastic process for turbulent advection. These 1D sub-domains are coupled to obtain a 3D approach. ODTLES is applied to channel flow. Preliminary results for the pdf of the wall shear stress are compared to DNS.}, language = {en} } @misc{MovagharLinneOevermannetal., author = {Movaghar, Amirreza and Linne, Mark and Oevermann, Michael and Meiselbach, Falko T. and Schmidt, Heiko and Kerstein, Alan R.}, title = {Numerical investigation of turbulent-jet primary breakup using One-Dimensional Turbulence}, series = {International Journal of Multiphase Flow}, volume = {89}, journal = {International Journal of Multiphase Flow}, issn = {1879-3533}, pages = {241 -- 254}, abstract = {Primary breakup to form droplets at liquid surfaces is an important fundamental process to study as it determines the initial properties of the dispersed phase, which affect mixing rates, secondary breakup, droplet collisions, and flow separation within the dispersed flow region. Primary breakup can be regarded as one of the least developed model components for simulating and predicting liquid jet breakup. How- ever, it is of paramount importance in many technical applications, e.g. fuel injection in engines and spray painting. This paper presents a numerical investigation of primary breakup of a turbulent liquid jet in still air at standard conditions using the one-dimensional turbulence (ODT) modeling framework. ODT is a stochastic model that simulates turbulent flow evolution along a notional 1D line of sight by applying instantaneous maps to represent the effect of individual turbulent eddies on property profiles. An important feature of ODT is the resolution of all relevant scales, both temporal and spatial. The restriction to one spatial dimension in ODT permits affordable high resolution of interfacial and single-phase property gradients, which is key to capturing the local behavior of the breakup process and allows simulations at high Reynolds and Weber numbers that are currently not accessible to direct numerical simulations (DNS). This paper summarizes our extensions of the ODT model to simulate geometrically simple jet breakup problems, including representations of Rayleigh wave breakup, turbulent breakup, and shear-driven breakup. Each jet breakup simulation consists of a short temporal channel section to initialize a turbulent velocity profile at the nozzle exit followed by an adjacent jet section. The simulations are carried out for jet exit Reynolds number of 11,500, 23,000, 46,000 and 92,000 while the Weber number is varied within the range 102-107. We present results on breakup statistics including spatial locations of droplet release, droplet sizes and liquid core length. The results on primary breakup are compared to experimental results and models.}, language = {en} } @misc{GlaweSchmidtKersteinetal., author = {Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R. and Klein, Rupert}, title = {XLES Part II: From Extended Large Eddy Simulation to ODTLES}, series = {arXiv.org}, journal = {arXiv.org}, pages = {41}, abstract = {In turbulence research and flow applications, turbulence models like RaNS (Reynolds averaged Navier-Stokes) models and LES (Large Eddy Simulation) are used. Both models filter the governing flow equations. Thus a scale separation approach is introduced for modeling purposes with the large scales simulated using a numerical scheme while smaller scales are assumed to be less important and might be modeled more or less easily. Unfortunately small scales are frequently of big importance, e.g. in reactive flows, wall bounded flows, or flows with significant Prandtl or Schmidt number effects. Recent alternatives to these standard models are the class of models based on the one-dimensional turbulence (ODT) idea, like ODTLES. The ability of ODT to capture highly turbulent flows (recently up to Reτ=6×105) allows ODTLES to realize 3D resolutions basically independent of the turbulent intensity. In two papers we provide a formal theory and application of an innovative modeling strategy for highly turbulent flows in domains of moderate complexity: In part I (see Glawe et al. (2015)) a new general filtering approach, called XLES (extended LES), is introduced. Contrary to LES, XLES is based on 2D filtering of the governing equations, whereby additional small scale terms are interpreted numerically. In this work a new ansatz for the ODTLES model is introduced as one special approach in the XLES family of models by incorporating the ODT model into XLES. The ODT model introduces microstructures not captured by the XLES filtered equations. To illustrate the ODTLES model capabilities, turbulent channel and duct flows up to friction Reynolds number Reτ=10000 are studied.}, language = {en} } @misc{KleinSchmidtKerstein, author = {Klein, Marten and Schmidt, Heiko and Kerstein, Alan R.}, title = {Transition to the ultimate regime in a stochastic model for thermal convection with internal sources}, address = {IPAM Workshop: Transport and Mixing in Complex and Turbulent Flows (CTF2021), University of California, Los Angeles, CA, USA}, pages = {1}, language = {en} } @misc{JozefikKersteinSchmidtetal., author = {Jozefik, Zoltan and Kerstein, Alan R. and Schmidt, Heiko and Lyra, Sgouria and Kolla, Hemanth and Chen, Jackie H.}, title = {One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS}, series = {Combustion and Flame}, volume = {162}, journal = {Combustion and Flame}, number = {8}, issn = {1556-2921}, pages = {2999 -- 3015}, language = {en} } @inproceedings{GlaweSchmidtKerstein, author = {Glawe, Christoph and Schmidt, Heiko and Kerstein, Alan R.}, title = {ODTLES: Mulitscale turbulence modeling and buoyant application}, series = {Book of abstracts, 7th European Postgraduate Fluid Dynamics Conference, Ilmenau, Germany, 14th - 17th, July 2014}, booktitle = {Book of abstracts, 7th European Postgraduate Fluid Dynamics Conference, Ilmenau, Germany, 14th - 17th, July 2014}, address = {Ilmenau}, pages = {S.46}, language = {en} } @misc{SchmidtKersteinNedelecetal., author = {Schmidt, Heiko and Kerstein, Alan R. and N{\´e}d{\´e}lec, Renaud and Wunsch, Scott and Sayler, Ben J.}, title = {One-dimensional turbulence simulation of a laboratory analog of radiatively induced cloud-top entrainment}, language = {en} } @inproceedings{GlaweKleinKersteinetal., author = {Glawe, Christoph and Klein, Rupert and Kerstein, Alan R. and Schmidt, Heiko}, title = {Towards the simulation of gravity waves using the One-Dimensional Turbulence model}, series = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, booktitle = {EGU General Assembly 2012, held 22-27 April, 2012 in Vienna}, language = {en} } @inproceedings{StollbergSchmidtNamangoetal., author = {Stollberg, Christian and Schmidt, M. and Namango, Saul and Pohl, R. and Ay, Peter}, title = {Conditioning, Identification and Automatic Sorting of Plastic Automotive Parts for Productive Recycling}, series = {International Automobile Recycling Congress, IARC 2002, Geneva, Switzerland, March 13 - 15, 2002, proceedings}, booktitle = {International Automobile Recycling Congress, IARC 2002, Geneva, Switzerland, March 13 - 15, 2002, proceedings}, publisher = {ICM AG}, address = {Muri}, language = {en} }