@misc{KiebistSchmidtkeSchrammetal., author = {Kiebist, Jan and Schmidtke, Kai-Uwe and Schramm, Marina and Hofrichter, Martin and K{\"o}nig, Rosalie and Quint, Stephan and Kohlmann, Johannes and Zuhse, Ralf and Ullrich, Ren{\´e} and Hofrichter, Martin and Scheibner, Katrin}, title = {Biocatalytic syntheses of antiplatelet metabolites of the thienopyridines clopidogrel and prasugrel using fungal peroxygenases}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {9}, issn = {2309-608X}, doi = {10.3390/jof7090752}, pages = {1 -- 17}, abstract = {Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL-1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h-1 H2O2 and 20\% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25\%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44\%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.}, language = {en} } @misc{IngenboschQuintDyllickBrenzingeretal., author = {Ingenbosch, Kim N. and Quint, Stephan and Dyllick-Brenzinger, Melanie and Wunschik, Dennis S. and Kiebist, Jan and S{\"u}ss, Philipp and Liebelt, Ute and Zuhse, Ralf and Menyes, Ulf and Scheibner, Katrin and Mayer, Christian and Opwis, Klaus and Gutmann, Jochen S. and Hoffmann-Jacobsen, Kerstin}, title = {Singlet oxygen generation by peroxidases and peroxygenases for chemo-enzymatic synthesis}, series = {ChemBioChem}, volume = {22}, journal = {ChemBioChem}, number = {2}, issn = {1439-7633}, doi = {10.1002/cbic.202000326}, pages = {398 -- 407}, abstract = {Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet-oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet-oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet-oxygen formation. All peroxidases and peroxygenases show singlet-oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye-decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet-oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen.}, language = {en} }