@inproceedings{BiberVesteZaplataetal., author = {Biber, Peter and Veste, Maik and Zaplata, Markus Klemens and Seiffert, S.}, title = {How do vegetation patterns develop in initial ecosystems? A modelling approach}, series = {Dimensions of ecology - from global change to molecular ecology, (Gf{\"O}) 39th annual conference, University of Bayreuth, 14th - 18th September 2009}, booktitle = {Dimensions of ecology - from global change to molecular ecology, (Gf{\"O}) 39th annual conference, University of Bayreuth, 14th - 18th September 2009}, editor = {Holzheu, Stefan and Thies, B.}, publisher = {Bayreuther Zentrum f{\"u}r {\"O}kologie und Umweltforschung (BayCEER) Selbstverlag}, address = {Bayreuth}, pages = {S. 123}, language = {en} } @misc{BiberSeifertZaplataetal., author = {Biber, Peter and Seifert, Stefan and Zaplata, Markus Klemens and Schaaf, Wolfgang and Pretzsch, Hans and Fischer, Anton}, title = {Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem}, series = {Biogeosciences}, volume = {10}, journal = {Biogeosciences}, doi = {10.5194/bg-10-8283-2013}, pages = {8283 -- 8303}, abstract = {We investigated surface and vegetation dynamics in the artificial initial ecosystem "Chicken Creek" (Lusatia, Germany) in the years 2006-2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system's early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation-substrate feedback processes.}, language = {en} } @misc{CarlBiberVesteetal., author = {Carl, Christin and Biber, Peter and Veste, Maik and Landgraf, Dirk and Pretzsch, Hans}, title = {Key drivers of competition and growth partitioning among Robinia pseudoacacia L. trees}, series = {Forest Ecology and Management}, volume = {430}, journal = {Forest Ecology and Management}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.08.002}, pages = {86 -- 93}, abstract = {Competition for above- and below-ground resources depends on their availability and results in varied growth partitioning. This becomes clear as the supply and limitation of the main resources influence the slope of the size-growth relationship in stands. Nevertheless, growth partitioning among trees, especially among black locust (R. pseudoacacia) trees is not understood in sufficient detail. To scrutinize and estimate the mode of competition of R. pseudoacacia, this research analyzed 1333 trees in Germany in 10 study sites, consisting in total 27 sample plots, with similar climate but varying soil conditions. The stand age ranged from 2 to 32 years, with a diameter at breast height ranging from 0.6 to 29.1 cm. The main focus of the study was to evaluate the impact of nitrogen, phosphorus, and water supply on the competition mode of R. pseudoacacia by varying growth partitioning. We applied the size-growth relationship in a mixed-effects model with a random intercept and slope. Fixed effects were the basal area, phosphorus, water, the sunlight competition index, and the interactions between below- and above-ground resources. Site specific effects of the analyzed stands were quantified with the aid of the random effects. Depending on the supply and limitation of phosphorus and water, this study determined how the competition mode as well as the growth partitioning among R. pseudoacacia trees were influenced. Hence, if phosphorus and water availability increased, then the competition for above-ground resources (primarily sunlight) and the slope of the size-growth relationship increased. Large trees grew disproportionately more than smaller trees. If the available phosphorus and water decreased, then the competition for the below-ground resources increased and the slope of the size-growth relationship decreased - to be more flattened. Moreover, it was found that available nitrogen as a below-ground resource had no influence on the mode of competition. In summary, phosphorus was the most important nutrient and, together with water, was the main driver of growth partitioning among R. pseudoacacia trees.}, language = {en} }