@misc{MazurKapuścikWeichbrodtetal., author = {Mazur, Michał and Kapuścik, Paulina and Weichbrodt, Wiktoria and Domaradzki, Jarosław and Mazur, Piotr and Kot, Małgorzata and Flege, Jan Ingo}, title = {WO3 Thin-Film Optical Gas Sensors Based on Gasochromic Effect towards Low Hydrogen Concentrations}, series = {Materials}, volume = {16}, journal = {Materials}, number = {10}, issn = {1996-1944}, doi = {10.3390/ma16103831}, pages = {17}, abstract = {Hydrogen gas sensors have recently attracted increased interest due to the explosive nature of H2 and its strategic importance in the sustainable global energy system. In this paper, the tungsten oxide thin films deposited by innovative gas impulse magnetron sputtering have been investigated in terms of their response to H2. It was found that the most favourable annealing temperature in terms of sensor response value, as well as response and recovery times, was achieved at 673 K. This annealing process caused a change in the WO3 cross-section morphology from a featureless and homogenous form to a rather columnar one, but still maintaining the same surface homogeneity. In addition to that, the full-phase transition from an amorphous to nanocrystalline form occurred with a crystallite size of 23 nm. It was found that the sensor response to only 25 ppm of H2 was equal to 6.3, which is one of the best results presented in the literature so far of WO3 optical gas sensors based on a gasochromic effect. Moreover, the results of the gasochromic effect were correlated with the changes in the extinction coefficient and the concentration of the free charge carriers, which is also a novel approach to the understanding of the gasochromic phenomenon.}, language = {en} } @misc{KapuścikWojcieszakPokoraetal., author = {Kapuścik, Paulina and Wojcieszak, Damian and Pokora, Patrycja and Mańkowska, Ewa and Domaradzki, Jarosław and Mazur, Michał and Mazur, Piotr and Kosto, Yuliia and Morales, Carlos and Kot, Małgorzata and Flege, Jan Ingo}, title = {Low temperature hydrogen sensor with high sensitivity based on CeOx thin film}, series = {Sensors and Actuators B: Chemical}, volume = {417}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier BV}, issn = {0925-4005}, doi = {10.1016/j.snb.2024.136148}, pages = {12}, abstract = {In this work, a 500 nm-thick cerium oxide thin film was prepared by electron beam evaporation. It was found that the deposition of 7 nm thick Pd catalyst was required for obtaining a sensor response to hydrogen. The Pd/CeOx sensing structure has a high response of 5000 towards 25 ppm H2 at a working temperature of 200 °C and exhibits a sensor response of 1.3 at temperatures near ambient. Furthermore, the sensing structure exhibited excellent response/recovery kinetics. The results confirm that the CeOx-based materials are a promising material for the fabrication of room-temperature hydrogen sensors.}, language = {en} } @misc{KostoKapuscikTschammeretal., author = {Kosto, Yuliia and Kapuscik, Paulina and Tschammer, Rudi and Guttmann, Dominic and Mankowska, Ewa and Matvija, Peter and Morales, Carlos and Mazur, Michał and Henkel, Karsten and Matolinova, Iva and Domaradzki, Jarosław and Flege, Jan Ingo}, title = {Bare and Pd-doped ceria thin films prepared by ALD and EBE for hydrogen detection}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {The need to store and use hydrogen safely as part of green economy based on renewable energy evokes a necessity to reliably detect it at ambient conditions. The majority of currently used sensors are working at elevated temperatures (200-500 °C). In this work, we demonstrate that ceria films deposited on a commercial electrode by atomic layer deposition (ALD) and electron beam evaporation (EBE) electrically respond to hydrogen (from 20 to 500 ppm) at much lower temperatures (50-200 °C). The results reveal that <1.5 nm thin Pd adlayer increases the electrical response by several orders of magnitude for both ceria films. The NAP-XPS study under changing oxidative/reductive atmospheres sheds light on the mechanism of Pd-CeOx thermal activation and the role of the deposition technique in the reactivity of the oxide.}, language = {en} }