@inproceedings{PetrovBokuchavaPapushkinetal., author = {Petrov, Peter and Bokuchava, Gizo and Papushkin, Igor and Genchev, Gancho Vladimirov and Doynov, Nikolay and Michailov, Vesselin and Ormanova, Maria}, title = {Neutron diffraction studies of laser welding residual stresses}, series = {19th International Conference and School on Quantum Electronics: Laser Physics and Applications, 26-30 September 2016 Sozopol, Bulgaria}, booktitle = {19th International Conference and School on Quantum Electronics: Laser Physics and Applications, 26-30 September 2016 Sozopol, Bulgaria}, publisher = {SPIE}, address = {Bellingham, Wash.}, isbn = {978-1-5106-0953-2}, doi = {10.1117/12.2261802}, language = {en} } @misc{KaishevaBokuchavaPapushkinetal., author = {Kaisheva, Darina and Bokuchava, Gizo and Papushkin, Igor and Genchev, Gancho Vladimirov and Doynov, Nikolay and Ossenbrink, Ralf and Michailov, Vesselin and Petrov, Peter}, title = {Determination of residual stresses in fiber laser welded stainless steel joints by neutron diffraction method}, series = {Proc. SPIE 11047, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications}, journal = {Proc. SPIE 11047, 20th International Conference and School on Quantum Electronics: Laser Physics and Applications}, address = {Nessebar}, doi = {10.1117/12.2516421}, pages = {7}, abstract = {This study presents an experimental results of residual stress states in stainless steel plate samples with size 100 x 50 x 10 mm welded using a high-power fiber laser. The technological parameters of the welding process were: laser power Q = 15 kW; laser spot size = 0.65 mm; welding speed V = 3 m/min; 4 m/min; 5 m/min, using 30 L/min of protective Ar gas. The neutron diffraction method was used to determine the residual stresses in the bulk of the material. The neutron experiments were performed on the FSD diffractometer at the IBR-2 pulsed reactor in the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research - Dubna, Russian Federation. The measured residual stress distributions exhibit maxima at weld seam centers. As expected, for all specimens the residual stress is falling down in regions distant from the weld zone. Maximal residual stress value of 492 MPa was observed for sample welded with speed of V = 5 m/min.}, language = {en} }