@misc{BenndorfHohmannSchmidtetal., author = {Benndorf, Christopher and Hohmann, Andrea and Schmidt, Peer and Eckert, Hellmut and Johrendt, Dirk and Sch{\"a}fer, Konrad and P{\"o}ttgen, Rainer}, title = {2D 31P Solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7}, series = {Journal of Solid State Chemistry}, volume = {235}, journal = {Journal of Solid State Chemistry}, doi = {10.1016/j.jssc.2015.12.028}, pages = {139 -- 144}, abstract = {Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.}, language = {en} } @misc{PfisterSchaeferOttetal., author = {Pfister, Daniela and Sch{\"a}fer, Konrad and Ott, Claudia and Gerke, Birgit and P{\"o}ttgen, Rainer and Janka, Oliver and Baumgartner, Maximilian and Efimova, Anastasia and Hohmann, Andrea and Schmidt, Peer and Venkatachalam, Sabarinathan and W{\"u}llen, Leo van and Sch{\"u}rmann, Ulrich and Kienle, Lorenz and Duppel, Viola and Parzinger, Eric and Miller, Bastian and Becker, Jonathan and Holleitner, Alexander and Weihrich, Richard and Nilges, Tom}, title = {Inorganic double helices in semiconducting SnIP}, series = {Advanced Materials}, volume = {28}, journal = {Advanced Materials}, number = {44}, issn = {1521-4095}, doi = {10.1002/adma.201603135}, pages = {9783 -- 9791}, abstract = {SnIP is the first atomic-scale double helical semiconductor featuring a 1.86 eV bandgap, high structural and mechanical flexibility, and reasonable thermal stability up to 600 K. It is accessible on a gram scale and consists of a racemic mixture of right- and left-handed double helices composed by [SnI] and [P] helices. SnIP nanorods <20 nm in diameter can be accessed mechanically and chemically within minutes.}, language = {en} }