@misc{GnanapragasamRichterBrunneretal., author = {Gnanapragasam, S. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Mai, M. and Lenk, Friedrich and Opitz-Coutureau, J. and Pensl, G. and Schmidt, J. and Zeimer, U. and Wang, L. and Krishnan, B. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {Irradiation effects on AlGaN HFET devices and GaN layers}, series = {Journal of Materials Science: Materials in Electronics}, volume = {19}, journal = {Journal of Materials Science: Materials in Electronics}, number = {1}, issn = {1573-482X}, doi = {10.1007/s10854-008-9589-1}, pages = {64 -- 67}, abstract = {AlGaN/GaN heterostructure field effect transistors (HFETs) were irradiated with protons as well as carbon, oxygen, iron and krypton ions of high (68 and 120 MeV) and low (2 MeV) energy with fluences in the range from 1x107 to 1x1013 cm-2. High energy irradiation with protons, carbon and oxygen produced no degradation in devices while krypton irradiation at the fluence of 1x1010 cm-2 resulted in a small reduction of 2\% in the transconductance. Similarly, for GaN samples irradiated with protons, carbon and oxygen at high energy no changes were seen by XRD, PL and Hall effect, while changes in lattice constant and a reduction in PL intensity were observed after irradiation with high energy krypton. Low energy irradiation with carbon and oxygen at a fluence of 5x1010 cm-2 results in small change in the device performance while remarkable changes in device characteristics are seen at a fluence of 1x1012 cm-2 for carbon, oxygen, iron and krypton irradiation. Similarly changes are also observed by XRD, PL and Hall effect for the thick GaN layer irradiated at the fluence of 1x1012 cm-2. The device results and GaN layer properties are strongly correlated.}, language = {en} } @misc{SoniaRichterBrunneretal., author = {Sonia, G. and Richter, E. and Brunner, F. and Denker, A. and Lossy, R. and Lenk, Friedrich and Opitz-Coutureau, J. and Mai, M. and Schmidt, J. and Zeimer, U. and Wang, L. and Baskar, K. and Weyers, M. and W{\"u}rfl, Joachim and Tr{\"a}nkle, G{\"u}nther}, title = {High energy irradiation effects on AlGaN/GaN HFET devices}, series = {Semiconductor Science and Technology}, volume = {22}, journal = {Semiconductor Science and Technology}, number = {11}, issn = {0268-1242}, doi = {10.1088/0268-1242/22/11/007}, pages = {1220 -- 1224}, abstract = {The effect of proton, carbon, oxygen and krypton irradiation on AlGaN HFET devices has been studied. Irradiation was performed at 68 and 120 MeV with fluences in the range from 1 × 10^7 to 1 × 10^13 cm2 . Before and after irradiation, dc and pulsed I - V characteristics, loadpull and S -parameters of the AlGaN HFET devices were measured. A thick GaN reference layer was characterized by x-ray diffraction, photoluminescence and Hall measurements before and after irradiation. Proton, carbon and oxygen irradiation show no degradation in devices while krypton irradiation shows a small change at a fluence of 1 × 10 10 cm2 in the device characteristics. The device results are correlated with the thick GaN results.}, language = {en} }