@article{GuesewellBrandtHimmelbergetal., author = {G{\"u}sewell, Manfred and Brandt, U. and Himmelberg, Axel and K{\"u}stner, F. and Roth, Norbert}, title = {Gastemperaturen in einer Zweiphasenstr{\"o}mung Fl{\"u}ssigkeit/Gas}, language = {de} } @article{GuesewellHimmelbergRothetal., author = {G{\"u}sewell, Manfred and Himmelberg, Axel and Roth, Norbert and Siepmann, Stefan}, title = {Untersuchungen zu Quenchprozessen}, language = {de} } @misc{RichterRachowIsraeletal., author = {Richter, Jana and Rachow, Fabian and Israel, Johannes and Roth, Norbert and Charlafti, Evgenia and G{\"u}nther, Vivien and Flege, Jan Ingo and Mauß, Fabian}, title = {Reaction Mechanism Development for Methane Steam Reforming on a Ni/Al2O3 Catalyst}, series = {Catalysts}, volume = {13}, journal = {Catalysts}, number = {5}, issn = {2073-4344}, doi = {10.3390/catal13050884}, pages = {23}, abstract = {In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steady-state fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios.}, language = {en} } @article{RothGuesewellHimmelberg, author = {Roth, Norbert and G{\"u}sewell, Manfred and Himmelberg, Axel}, title = {Messung von Tropfenmerkmalen in einer Quenchapparatur}, language = {de} } @article{RothGuesewellHimmelberg, author = {Roth, Norbert and G{\"u}sewell, Manfred and Himmelberg, Axel}, title = {Gestaltung und Betrieb einer Technikumsquenchanlage}, language = {de} } @misc{VanTreekRothSeideletal., author = {Van Treek, Lisa and Roth, Norbert and Seidel, Lars and Mauß, Fabian}, title = {Measurements of the laminar burning velocities of rich ethylene/air mixtures}, series = {Fuel}, volume = {275}, journal = {Fuel}, issn = {0016-2361}, doi = {10.1016/j.fuel.2020.117938}, pages = {9}, abstract = {Laminar burning velocities of premixed ethylene/air flames were investigated under fuel lean and rich conditions. The laminar burning velocities were measured with the heat flux method at atmospheric pressure and unburnt gas temperatures of 298 K. The measurements have been performed for the equivalence ratio range of Φ = 0.7-2.5 using stabilized and flat flames on a perforated burner plate under adiabatic conditions. This is the first time that experimental measurements with the heat flux method of the ethylene/air flames under super fuel rich conditions are performed. The experimental data were compared against predictions using three different kinetic models and published flame speed. The measured flame speeds agree with other published data within the error margin. The experimental and predicted laminar flames do agree at fuel lean conditions, but there are some notable discrepancies under fuel rich conditions.}, language = {en} } @misc{VanTreekRothSeideletal., author = {Van Treek, Lisa and Roth, Norbert and Seidel, Lars and Mauß, Fabian}, title = {Laminar burning velocities of rich ethylene / air flames}, abstract = {The laminar burning velocity SL of a given mixture of fuel and oxidizer is an important parameter to characterize premixed flames. SL is not only a fundamental parameter to calculate properties of turbulent flames, it is also an important target for the development of chemical kinetic mechanisms. Under fuel rich conditions it has relevance when simulating soot formation in burner stabilized flames. Many experiments on soot formation have been conducted in fuel-rich burner stabilized ethylene flames. Therefore an interest exists in experimental data for laminar burning velocity, in particular in fuel-rich ethylene flames. In the present work, ethylene / air flames were measured in the heat flux setup. Subsequently, the experimental data were compared against existing data and modelled using two kinetic models.}, language = {en} }