@misc{GlukhovLepriMiloetal., author = {Glukhov, Artem and Lepri, Nicola and Milo, Valerio and Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays}, series = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, journal = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, doi = {10.1109/VLSI-SoC54400.2022.9939653}, pages = {1 -- 5}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations.}, language = {en} } @misc{GlukhovMiloBaronietal., author = {Glukhov, Artem and Milo, Valerio and Baroni, Andrea and Lepri, Nicola and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators}, series = {2022 IEEE International Reliability Physics Symposium (IRPS)}, journal = {2022 IEEE International Reliability Physics Symposium (IRPS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-7950-9}, issn = {2473-2001}, doi = {10.1109/IRPS48227.2022.9764497}, pages = {3C.3-1 -- 3C.3-7}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.}, language = {en} }