@misc{FroeschkeYasmenPopovetal., author = {Froeschke, Samuel and Yasmen, Nadia and Popov, Alexey and Schiemenz, Sandra and Wolf, Daniel and Giebeler, Lars and Hantusch, Martin and Gr{\"a}ßler, Nico and B{\"u}chner, Bernd and Schmidt, Peer and Hampel, Silke}, title = {Controlled Nanoplatelet Deposition of 2D Chromium Trihalide Solid Solutions}, series = {Chemistry of Materials}, volume = {35}, journal = {Chemistry of Materials}, number = {11}, issn = {1520-5002}, doi = {10.1021/acs.chemmater.2c03785}, pages = {4136 -- 4148}, abstract = {The two-dimensional (2D) chromium trihalides CrCl3, CrBr3, and CrI3 are most famous for their exotic magnetic properties when their crystals get downscaled to nanometer dimensions. One way to tune the properties of such materials and to further increase their potential utility, e.g., in spintronics, is the formation of solid solutions. Here, we present a detailed theoretical and experimental study on the synthesis and nanoplatelet growth of CrBrxCl3-x and CrBrxI3-x solid solutions. Phase pure powder was obtained by tempering the respective parent compounds at 600 and 550 °C, using additional iodine in the case of CrBrxI3-x. The dominant stacking order changes at x = 1.8 for CrBrxCl3-x while remaining similar to CrI3 for the whole CrBrxI3-x series. A consecutive chemical vapor transport from 575 → 525 °C for 2 h (CrBrxCl3-x) or 600 → 550 °C for 3 h with 0.1 mmol additional iodine (CrBrxI3-x) resulted in the deposition of high-quality nanoplatelets on a substrate with only several nanometers in height. The composition can be controlled by the choice of the starting material, since only small shifts in the anion ratio occur during the transport. The deposited CrBrxCl3-x nanoplatelets can then be easily delaminated by ultrasonication in ethanol to reduce the height even further to few-layer dimensions. These nanoplatelets could potentially be used to investigate the property changes (e.g., in terms of magnetic response) for the downscaling of these solid solutions. We further demonstrate the quality of the deposited material by transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. Raman spectroscopy of the solid solution series reveals a complex evolution of vibrational modes. Photoluminescence measurements on solid solution samples show emission peaks in the near-infrared energy range with the specific energy and intensity being composition and temperature dependent.}, language = {en} } @misc{FroeschkeSchrothSteineretal., author = {Froeschke, Samuel and Schroth, Karl-Georg and Steiner, Udo and Popov, Alexey and Schiemenz, Sandra and Wolf, Daniel and Giebeler, Lars and Gr{\"a}ßler, Nico and B{\"u}chner, Bernd and Schmidt, Peer and Hampel, Silke}, title = {Understanding the chemistry of 2D rhodium trihalide solid solutions: tuning of optical properties and nanocrystal deposition}, series = {2D Materials}, volume = {10}, journal = {2D Materials}, number = {3}, issn = {2053-1583}, doi = {10.1088/2053-1583/acd012}, pages = {1 -- 12}, abstract = {In the search for novel 2D materials with potentially valuable properties, such as a tunable band gap for optoelectronic or catalytic applications, solid solutions hold the potential to significantly expand the inventory of available 2D nanomaterials. In this study, we present for the first time the synthesis of such 2D rhodium trihalide solid solutions: RhBrxCl3-x and RhBrxI3-x. We use thermodynamic simulations and simultaneous thermal analysis to predict conditions for their rational synthesis and to investigate suitable chemical vapor transport (CVT) parameters for these solid solutions. The evolution of the lattice parameters was investigated by powder x-ray diffraction, showing an isostructural relationship of the synthesized compounds and only minor deviation from Vegard's law. The optical band gap of these materials can be tuned in an energy range from 1.5 eV (RhCl3) to 1.2 eV (RhI3) by choosing the composition of the solid solution, while the samples also exhibit photoluminescence in similar energy ranges. Ultimately, the successful deposition of bulk as well as ultrathin 2D nanocrystals of RhBrxCl3-x by CVT from 925 °C to 850 °C is shown, where the composition of the deposited crystals is precisely controlled by the choice of the starting composition and the initial amount of material. The high quality of the obtained nanocrystals is confirmed by atomic force microscopy, high resolution transmission electron microscopy and selected area electron diffraction. For RhBrxI3-x, the CVT from 900 °C to 825 °C is more difficult and has only been practically demonstrated for an exemplary case. According to the observed properties, these novel solid solutions and nanocrystals show a great potential for an application in optoelectronic devices.}, language = {en} } @misc{FroeschkeWolfHantuschetal., author = {Froeschke, Samuel and Wolf, Daniel and Hantusch, Martin and Giebeler, Lars and Wels, Martin and Gr{\"a}ßler, Nico and B{\"u}chner, Bernd and Schmidt, Peer and Hampel, Silke}, title = {Synthesis of micro- and nanosheets of CrCl3-RuCl3 solid solution by chemical vapour transport}, series = {Nanoscale}, volume = {29}, journal = {Nanoscale}, number = {14}, issn = {2040-3372}, doi = {10.1039/D2NR01366E}, pages = {10483 -- 10492}, abstract = {Solid solutions of 2D transition metal trihalides are rapidly growing in interest for the search for new 2D materials with novel properties at nanoscale dimensions. In this regard, we present a synthesis method for the Cr1-xRuxCl3 solid solution and describe the behaviour of the unit cell parameters over the whole composition range, which in general follows Vegard's law in the range of a = 5.958(6)CrCl3 … 5.9731(5)RuCl3 {\AA}, b = 10.3328(20)CrCl3 … 10.34606(21)RuCl3 {\AA}, c = 6.110(5)CrCl3 … 6.0385(5)RuCl3 {\AA} and β = 108.522(15)CrCl3 … 108.8314(14)RuCl3 °. The synthesized solid solution powder was subsequently used to deposit micro- and nanosheets directly on a substrate by applying chemical vapour transport in a temperature gradient of 575 °C → 525 °C for 2 h and 650 °C → 600 °C for 0.5 h as a bottom-up approach without the need for an external transport agent. The observed chromium chloride enrichment of the deposited crystals is predicted by thermodynamic simulation. The results allow for a nanostructure synthesis of this solid solution with a predictable composition down to about 30 nm in height and lateral size of several μm. When applying a quick consecutive delamination step, it is possible to obtain few- and monolayer structures, which could be used for further studies of downscaling effects for the CrCl3-RuCl3 solid solution. X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy were used to confirm the purity and quality of the synthesized crystals.}, language = {en} } @misc{HansenFuckeCharvinetal., author = {Hansen, Felix and Fucke, Rico and Charvin, Titouan and Froeschke, Samuel and Wolf, Daniel and Giraud, Romain and Dufouleur, Joseph and Gr{\"a}ßler, Nico and B{\"u}chner, Bernd and Schmidt, Peer and Hampel, Silke}, title = {Direct Deposition of (BixSb1-x)2Te3 Nanosheets on Si/SiO2 Substrates by Chemical Vapor Transport}, series = {Crystal growth \& design}, volume = {22}, journal = {Crystal growth \& design}, number = {4}, issn = {1528-7505}, doi = {10.1021/acs.cgd.1c01446}, pages = {2354 -- 2363}, abstract = {The tellurides of bismuth and antimony (Bi2Te3 and Sb2Te3) are prominent members of the V2VI3 material family that exhibit promising topological properties. We provide a method for the rational synthesis of mixed crystals of these materials ((BixSb1-x)2Te3 with x = 0.1, ..., 0.9) by means of a bottom-up chemical vapor transport (CVT) approach. Thermodynamic calculations showed the synthesis to be possible in the temperature range of 390-560 °C without significant enrichment of either component and without adding a transport agent. The starting materials were synthesized and verified by X-ray diffraction (XRD). Optimization experiments showed the ideal conditions for nanosheet synthesis to be T2 = 560 °C, T1 = 390 °C with a reaction time of t = 36 h. Crystals with heights of down to 12 nm (12 quintuple layers) were synthesized and analyzed by means of scanning electron microscopy, energy-dispersive X-ray spectrometry, and atomic force microscopy. High-resolution transmission electron microscopy confirmed the R3̅m crystal structure, high crystallinity, and overall quality of the synthesized (BixSb1-x)2Te3 nanosheets. Magnetotransport measurements revealed that such ternary compounds can have a significantly reduced carrier density compared to the binary parent compounds.}, language = {en} }