@misc{FellahHezilDjellabietal., author = {Fellah, Mamoun and Hezil, Naouel and Djellabi, Ridha and Samad, Mohammed Abdul and Touhami, Mohamed Zine and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Rapid and enhanced recovery of poly-dispersed nonionic surfactant (TX-100) from organic mediums using dehydrated and rehydrated kaolin}, series = {Applied Clay Science}, volume = {177}, journal = {Applied Clay Science}, issn = {0169-1317}, doi = {10.1016/j.clay.2019.05.004}, pages = {43 -- 50}, abstract = {The recovery of surfactants from organic mediums is of great economic and environmental interests in the field of petrochemicals sector. The aim of this study was to recover poly-dispersed nonionic surfactant (TX-100) from organic medium by the use of dehydrated and rehydrated kaolin. It was found that the presence of water after kaolin rehydration decreases considerably the amount of TX-100 adsorption from 28.7 μmol.g-1 onto dehydrated kaolin to 23.4 μmol.g-1 onto rehydrated kaolin. The estimation of the number of statistical layers of water deposited on kaolin was observed to be about 7 to 9. The effect of type of solvents (heptane, cyclohexane and benzene) on the adsorption onto rehydrated kaolin revealed a reduction in the adsorbed quantity; the adsorbed amounts were found to be 28.7 μmol.g-1, 26.7 μmol.g-1 and 24.2 μmol.g-1 in heptane, cycloheptane and benzene phases, respectively. On the other hand, it was observed that a temperature increased from 20 °C to 35 °C and 45 °C negatively affects the adsorption of TX-100 onto dehydrated and/or hydrated kaolin in heptane medium.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Montagne, Alex and Kosman, Stephania and Megias, Alberto and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Biotribocorrosion behaviour of newly developed nanostructured near β-types Titanium based Alloys for Biomedical Applications}, series = {nanoMAT2019 - 2nd International Conference on Nanomaterials and Their Applications}, journal = {nanoMAT2019 - 2nd International Conference on Nanomaterials and Their Applications}, pages = {170}, abstract = {The biotribocorrosion behavior of newly developed nanocristalline near β-types Ti-15Nb and Ti-15Mo alloys surfaces, sintered by powder metallurgy and sequentially milled, has been investigated in SBF simulated body fluid (PBS solution) at OCP, an applied potential in the passive region and EIS. Reciprocating sliding tests using a ball-on-plate tribometer under differentes applied loads 3, 7 and 10 N load and anodic potentials were applied to evaluate the effect of applied lad and the effect of Nb and Mo elements on tribocorrosion behaviors of samples. Results showed that, Ti-Nb exhibited better anticorrosive properties than Ti-Mo. Under tribological action the nanostructured both of alloys showed similar friction coefficient, while Ti-Nb present lower tendency to corrosion compared to Ti-Mo. Furthermore, Nb diffusion increased the repassivation rate with respect to Ti-Mo surfaces due to its stable passive film. Due to the high chemical reaction rate in β-type Ti-15Mo alloy as compared to Ti-15Nb. The β- Ti-15Nb showed lower volume loss, lower friction coefficient values and exhibited better corrosion resistance during tribocorrosion tests than Ti-15Mo. Prevailing electrochemical conditions between -1 and 2 V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear. Also, wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys. However, considering biomedical applications, the β- Ti15 Mo and Ti15Nb alloys may be good candidates with low elastic modulus and without toxic alloying elements.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Djellabi, Ridha and Montagne, Alex and Mejias, Alberto and Kossman, Stephania and Iost, Alain and Purnama, Agung and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of Molybdenum Content on Structural, Mechanical, and Tribological Properties of Hot Isostatically Pressed β-Type Titanium Alloys for Orthopedic Applications}, series = {Journal of Materials Engineering and Performance}, volume = {28}, journal = {Journal of Materials Engineering and Performance}, number = {10}, issn = {1059-9495}, doi = {10.1007/s11665-019-04348-w}, pages = {5988 -- 5999}, abstract = {Aiming to develop alloys with better properties for orthopedic applications, the focus of the present research was to evaluate the effect of Mo at.\% content on structural, mechanical, and tribological properties of hot isostatically pressed Ti-xMo (x = 4, 8, 12, 15, and 20 at.\%) alloys. The structural evolution, mechanical properties, and tribological behavior of the nanostructured Ti-xMo alloys were evaluated using x-ray diffraction, scanning electron microscope, and ball-on-disk tribometer. Wear tests were conducted under different applied loads of 2, 8, and 16 N. Experimental results indicated that the structural evolution and morphological changes of the milled alloys were sensitive to their molybdenum (Mo) content. The morphological characterization showed that the crystallite size and the particle size decreased with increasing Mo content (at.\%) reaching the lowest values of 27 and 26 nm in the case of Ti-15Mo and Ti-20Mo, respectively. On the other hand, the coefficient of friction and wear rates were found to be decreasing with increasing Mo content.}, language = {en} } @misc{HezilFellahDjellabietal., author = {Hezil, Naouel and Fellah, Mamoun and Djellabi, Ridha and Touhami, Mohamed Zine and Montagne, Alex and Bouaksa, Fethia and Iost, Alain and Mejias, Alberto and Obrosov, Aleksei}, title = {Assessment of the Hydrophilic-Hydrophobic Balance of Alumina Oxidized at Different Temperatures via H₂O and C₄H₁₀ Vapor Adsorption}, series = {Defect and Diffusion Forum}, volume = {397}, journal = {Defect and Diffusion Forum}, issn = {1662-9507}, doi = {10.4028/www.scientific.net/DDF.397.161}, pages = {161 -- 168}, abstract = {The hydrophilic-hydrophobic surface area of alumina powder (Al₂O₃) oxidized at different temperatures was determined on the base of adsorption of water and butane vapor at 25°C. In the order to study the influence of thermal oxidation upon hydrophilic/hydrophobic character of the surface, samples of Al₂O₃ were characterized using granulometry, SEM and BET surface area measurement. SEM results showed that the thermal treatment does not affect the morphology of the Alunima. However, the increase of treatment temperature from 250 to 900°C results in changing of the hydrophilic-hydrophobic balance of Al₂O₃ surface.}, language = {en} } @misc{FellahHezilSamadetal., author = {Fellah, Mamoun and Hezil, Naouel and Samad, Mohammed Abdul and Touhami, Mohamed Zine and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Preliminary investigation on the bio-tribocorrosion behavior of porous nanostructured β-type titanium based biomedical alloys}, series = {Materials Letters}, volume = {257}, journal = {Materials Letters}, issn = {0167-577X}, doi = {10.1016/j.matlet.2019.126755}, pages = {4}, abstract = {The bio-tribocorrosion behavior of newly developed near β-types Ti-15Nb and Ti-15Mo alloys was investigated in Phosphate-Buffered Saline (PBS) under different loads. Open-Circuit Potential (OCP), friction coefficient, wear volume and wear rate were evaluated. The results revealed that Ti-15Nb alloy exhibited lower wear rate, lower friction coefficient and better corrosion resistance during tribocorrosion than the Ti-15Mo alloy. This can be attributed to the diffusion of Nb which increases the repassivation rate (formation of a protective layer) in the Ti-15Nb alloy. In contrast Ti-15Mo shows a significantly higher rate of chemical reaction.}, language = {en} } @misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Obrosov, Aleksei and Weiß, Sabine and Kashkarov, Egor B. and Lider, Andrey M. and Montagne, Alex and Iost, Alain}, title = {Enhanced Structural and Tribological Performance of Nanostructured Ti-15Nb Alloy for Biomedical Applications}, series = {Results in Physics}, volume = {15}, journal = {Results in Physics}, issn = {2211-3797}, doi = {10.1016/j.rinp.2019.102767}, pages = {7}, abstract = {Low modulus β-type Ti-15Nb alloys were prepared by subjecting them to different sintering temperatures (800, 900, 1000 and 1100 °C) and their morphological and structural properties were evaluated. X-ray diffraction analysis was used for the morphological characterization which indicated that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach the lowest values of 41 nm and 27.5 nm at 1100 °C, respectively. Moreover, the higher sintering temperature resulted in higher relative density, greater hardness and young's modulus of the Ti-15Nb alloys. Wear tests were conducted using a ball-on-plate type Oscillating tribometer, under different applied loads (2, 8 and 16 N) to evaluate their tribological characterization. The wear rate and friction coefficient were lower at higher sintering temperature. This enhancement in tribological properties was attributed to a grain refinement. The Ti-15Nb alloys sintered at 1100 °C showed the best tribological performance.}, language = {en} } @misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Hussien, Mohammed A. and Montagne, Alex and Mejias, Alberto and Iost, Alain and Kossman, Stephania and Chekalkin, Timofey and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of Sintering Temperature on Mechanical and Tribological Behavior of Ti-Ni Alloy for Biomedical Applications}, series = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, journal = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36295-9}, issn = {2367-1181}, doi = {10.1007/978-3-030-36296-6_157}, pages = {1701 -- 1710}, abstract = {Ti-Ni powder compacts were prepared by mechanical alloying (MA), followed by hot isostatic pressing (HIP). Afterwards, the samples were sintered at different temperatures (950, 1050, 1150 and 1250 °C). Microhardness, density, crystallite size as well as microstrain of the sintered samples were measured and analyzed. Wear characteristics in phosphate-buffered saline (PBS) solution was tested under different applied loads of 2 N, 10 N, and 20 N, respectively. The results indicated that the crystallite size continuously decreases with increasing sintering temperature and reaches the lowest value of 31.3 nm at 1250 °C. The relative density of the sample sintered at 1250 °C is 98.0\%. Moreover, the higher sintering temperatures lead to the higher relative density and the increase in hardness and young's modulus of the sample. At the same time the friction coefficient and wear rate were lower for the samples sintered at 1250 °C. This improvement in friction and wear resistance is attributed to the grain size refinement. Ti-Ni sintered at 1250 °C showed good tribological performance under all test conditions.}, language = {en} } @misc{FellahHezilGuerfietal., author = {Fellah, Mamoun and Hezil, Naouel and Guerfi, Kamel and Djellabi, Ridha and Montagne, Alex and Iost, Alain and Borodin, Kirill and Obrosov, Aleksei}, title = {Mechanistic pathways of cationic and anionic surfactants sorption by kaolinite in water}, series = {Environmental Science and Pollution Research}, volume = {28}, journal = {Environmental Science and Pollution Research}, number = {6}, issn = {1614-7499}, doi = {10.1007/s11356-020-11083-6}, pages = {7307 -- 7321}, abstract = {Surfactants are widely used in many chemical industries and as primary components of cleaning detergents due to their specific characteristics, which in turn results in high pollution of domestic and industrial wastewaters by such substances. In this study, the mechanistic pathways of the adsorption of cationic benzyl-dimethyl-dodecyl ammonium bromide (BDDAB) and anionic sodium dodecyl sulfate (SDS) surfactants on kaolinite clay in water were investigated. The results showed that the adsorption of anionic surfactant (SDS) on kaolinite is better compared with cationic surfactant (BDDAB), wherein the ♦maximum adsorption capacity was found 161.4 μmol g-1 and 234 μmol g-1 for BDDAB and SDS, respectively. Adsorption kinetics were the best suited to pseudo-second-order model for both BDDAB and SDS with an adsorption rate constant of 0.028 g μmol-1 min-1 and 0.023 g μmol-1 min-1, respectively. Meanwhile, the adsorption of BDDAB by kaolinite showed that the isotherm adsorption tended to follow the Langmuir-Freundlich and Freundlich isotherm models. However, the SDS adsorption isotherm obeyed only the Langmuir-Freundlich model.}, language = {en} } @misc{FouziaFellahHeziletal., author = {Fouzia, Hammadi and Fellah, Mamoun and Hezil, Naouel and Aissani, Linda and Mimanne, Goussem and Mechachti, Said and Samad, Mohammed Abdul and Montagne, Alex and Iost, Alain and Weiß, Sabine and Obrosov, Aleksei}, title = {The effect of milling time on the microstructure and mechanical properties of Ti-6Al-4Fe alloys}, series = {Materials Today Communications}, volume = {27}, journal = {Materials Today Communications}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2021.102428}, pages = {11}, abstract = {Replacement of toxic and expensive vanadium (V) in medical grade titanium alloys with cheaper and non-toxic elements such as iron (Fe) or niobium (Nb), is an important step forward in developing safer and less expensive biomaterials. Evaluating the effect of different process parameters such as the milling time on the properties of these newly developed alloys helps in understanding and controlling their behavior. Hence, in this study, the influence of ball-milling duration (2, 6, 8, 12 and 18 h) on crystalline structure, phase evolution, densification, and mechanical characteristics of biomedical nanocrystalline Ti-6Al-4Fe (wt. \%) alloys is investigated. X-ray diffraction (XRD) confirmed that after 6 h of milling, aluminum (Al) and Fe completely dissolved into Ti matrix to form a solid solution of Ti (Al, Fe). XRD further revealed that the crystallite size decreased from 56 to 30 nm and the micro-strain increased with an increase in milling time. A decrease in porosity along with an increase in density is also observed for the alloys with increasing milling time. Moreover, the values of porosity obtained for the developed Ti-6Al-4Fe alloys ranged from 1 to 12 \%, which is comparable to the porosity of one of the cortical bones making it a potential candidate for bone replacements. Microhardness measurements showed that the hardness of the Ti-6Al-4Fe alloys was greater than the hardness of the conventional Ti-6Al-4V alloys. It was observed that the Ti-6Al-4Fe alloy fabricated with the powders milled for 2 h showed the lowest value of Young's Modulus. Milling time also had a significant effect on the surface roughness of the alloy samples, which showed a decreasing trend with increasing milling times.}, language = {en} } @misc{HezilAissaniFellahetal., author = {Hezil, Naouel and Aissani, Linda and Fellah, Mamoun and Samad, Mohammed Abdul and Obrosov, Aleksei and Chekalkin, Timofey and Marchenko, Ekaterina}, title = {Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip}, series = {Journal of Materials Research and Technology}, journal = {Journal of Materials Research and Technology}, number = {19}, issn = {2238-7854}, doi = {10.1016/j.jmrt.2022.06.042}, pages = {3568 -- 3578}, abstract = {Titanium alloys are in demand for various biomedical applications and the most popular among them being, Ti-6Al-4V. Hence, in this study, Ti-6Al-7Nb are fabricated through the route of mechanical milling using different sintering temperatures. X-ray diffraction and hardness tests were conducted to characterize the developed sams to evaluate the effect of sintering temperatures on the structural and mechanical properties. It is observed that the sams sintered at a temperature of 1250 °C had the smallest crystallite and pore size, with enhanced relative density and mechanical properties. Tribological tests were conducted at varying normal loads to characterize the wear and frictional behaviour and showed that the sams sintered at 1250 °C presented the lowest friction coefficient and wear rate.}, language = {en} } @misc{BoukhalfaHezilOuanesetal., author = {Boukhalfa, Chaima and Hezil, Naouel and Ouanes, Miyada and Fellah, Mamoun and Baccouche, Mostefa and Obrosov, Aleksei and Dahmani, Marwa}, title = {The effect of surface properties on the wear resistance of Ti-6Al-4V biomedical alloy manufactured via mechanical alloying}, series = {First National Conference on Materials Sciences and Engineering MSE-22}, journal = {First National Conference on Materials Sciences and Engineering MSE-22}, editor = {Fellah, Mamoun and Hezil, Naouel}, publisher = {Abbes Laghour University}, address = {Khenchela, Algeria}, isbn = {978-9931-9603-2-4}, pages = {543 -- 543}, abstract = {The Ti-6Al-4V alloy is one of the common used titanium alloys in prosthetic applications, due to its significant proprieties, however, its wear performance is questionable, hence, the present study aims to evaluate the wear resistance of a Nanostructured Ti-6Al-4V alloy manufactured via high energy ball milling, with varying milling duration in order to investigate the correlation between surface proprieties and the wear performance of the alloy so as understanding its wear mechanisms.}, language = {en} } @misc{BoukhalfaHezilOuanesetal., author = {Boukhalfa, Chaima and Hezil, Naouel and Ouanes, Miyada and Fellah, Mamoun and Baccouche, Mostefa and Obrosov, Aleksei and Dahmani, Marwa}, title = {Structure-property correlation in a Nanostructured Ti-6Al-4V alloy designed for biomedical applications}, series = {First National Conference on Materials Sciences and Engineering MSE-22}, journal = {First National Conference on Materials Sciences and Engineering MSE-22}, editor = {Fellah, Mamoun and Hezil, Naouel}, publisher = {Abbes Laghour University}, address = {Khenchela, Algeria}, isbn = {978-9931-9603-2-4}, pages = {703 -- 703}, abstract = {The use of powder metallurgy techniques for manufacturing near net shape components for the biomedical field is on a continuous development. Evaluating the effect of different process parameters such as milling time on the properties of these newly developed alloys leads to enhancing their properties, Hence, in this paper, the influence of structural parameters on the mechanical proprieties of a nanostructured Ti-6Al-4V alloy was investigated, considering the milling duration variation.}, language = {en} } @misc{FellahHezilBourasetal., author = {Fellah, Mamoun and Hezil, Naouel and Bouras, Dikra and Montagne, Alex and Obrosov, Aleksei and Jamshed, Wasim and Ibrahim, Rabha W. and Iqbal, Amjad and El Din, Sayed M. and Khalifa, Hamiden Abd El-Wahed}, title = {Investigating the effect of milling time on structural, mechanical and tribological properties of a nanostructured hiped alpha alumina for biomaterial applications}, series = {Arabian Journal of Chemistry}, volume = {16}, journal = {Arabian Journal of Chemistry}, number = {10}, issn = {1878-5379}, doi = {10.1016/j.arabjc.2023.105112}, abstract = {In this work was prepared α-Al2O3 alloys from laboratory aluminum oxide powder that was milled for different periods of time and sintered at a temperature of 1450 °C. The difference between the prepared samples was studied using several experimental measurement techniques, including X-ray diffraction, scanning electron microscopy and measurement of physical and mechanical properties. Moreover, the effect of milling time on the formation and sintering of alpha-alumina, by milling the mixture at different times using high energy crushing technique was studied. An influence of milling time on density, open spaces and microstructure of the samples was analyzed. The obtained results showed that longer milling duration led to alloys with higher hardness (H) and modulus of elasticity (E). This improvement is due to lower porosity and corresponding higher density at high temperatures. A noticeable decrease in the size of the particles with the increase of the milling time led to an increase in the lattice parameter accompanied by a decrease in defects and ionic voids. The percentage of pores reached 0.04 \% within 24 h of grinding after it was approximately 0.20 \%, while the density reached 96 \% after the same highest grinding time. Tests showed that the value of friction coefficient decreases, while it increases with the increase in the applied pressure force and this was confirmed by SEM images of the samples. the main factor to reduce friction is the increase in grinding time, regardless of the value of the applied load. The results showed that the Al2O3 alloy applied to it with a load of 2 N and milled for 24 h had a minimum value of 1.94 µm3 wear volumes and a wear rate of 1.33 (µm3∙N-1∙µm-1). The sample milled for 24 h showed the best result, characterized by the lowest wear size, specific wear rate and the highest hardness with extraordinary density of 96 \%, which is important in the field of biomaterials applications.}, language = {en} } @misc{HamadiFellahHeziletal., author = {Hamadi, Fouzia and Fellah, Mamoun and Hezil, Naouel and Bouras, Dikra and Laouini, Salah Eddine and Montagne, Alex and Khalifa, Hamiden Abd El-Wahed and Obrosov, Aleksei and El-Hiti, Gamal A. and Yadav, Krishna Kumar}, title = {Effect of milling time on structural, physical and tribological behavior of a newly developed Ti-Nb-Zr alloy for biomedical applications}, series = {Advanced Powder Technology}, volume = {35}, journal = {Advanced Powder Technology}, number = {1}, issn = {1568-5527}, doi = {https://doi.org/10.1016/j.apt.2023.104306}, abstract = {Titanium (Ti)-based alloys with only a β-phase have attracted academic and industrial interest for orthopedic application, due to their close properties to those of tissues. The current study aims to investigate the effect of milling time (2 h, 6 h, 12 h and 18 h) on the nanostructured ternary alloy Ti-25Nb-25Zr prepared by high energy milling, on its structural, physical and tribological behaviors. The alloys' characteristics such as relative density/porosity, surface roughness, were evaluated using XRD, SEM, surface profilometry, and microdurometer, respectively. The tribological characterization was done using an oscillating tribometer under wet conditions, simulating the human body environment. Results showed that the crystallite and mean pore size reduced with increasing milling time, with the smallest values of 26 nm and 40 µm, respectively after 18 h. Structural characterization shows that the amount of the β-Ti phase increased with increasing milling time, resulting in spherical morphology and texturing of the synthesized alloys. The milled alloys' structural evolution and morphological changes were sensitive to their milling times. Also, the relative density, Young's modulus and hardness, increased due to grain size decreased with increasing milling time. Tribological results showed that the effect of milling has a significant effect on both nanomaterial formation and friction-wear behavior of the alloys. The results showed that, friction coefficient and wear rate significantly decreased due to the increased formation of protective films such as TiO2, Nb2O5 and ZrO2 phases. The wear mechanism of the Ti-25Zr-25Nb system was dominated by abrasion wear accompanied by adhesion wear.}, language = {en} } @misc{FellahHezilBourasetal., author = {Fellah, Mamoun and Hezil, Naouel and Bouras, Dikra and Obrosov, Aleksei and Samad, Mohammed Abdul and Montagne, Alex and Abd-Elmonem, Assmaa and Din, Sayed M El and Weiß, Sabine}, title = {Structural, mechanical and tribological performance of a nano structured biomaterial Co-Cr-Mo alloy synthesized via mechanical alloying}, series = {Journal of Materials Research and Technology}, volume = {25}, journal = {Journal of Materials Research and Technology}, issn = {2214-0697}, doi = {10.1016/j.jmrt.2023.06.031}, pages = {2152 -- 2165}, abstract = {The influence of milling time on the tribological behavior of a Co-Cr-Mo alloy designed for biomedical applications, synthesized via mechanical alloying is investigated. Elemental Co, Cr and Mo powders are milled using different milling times (2, 6, 12 and 18 h) in a high-energy ball mill. The resulting powders were subjected to cold uniaxial and hot isostatic pressing respectively, followed by sintering to obtain cylindrical samples, which were evaluated for their structural, mechanical and the wear behavior. Results showed that the grain and crystallite sizes of the powders decreased with increasing milling time, reaching low values of <10 μm and 32 μm respectively, at higher milling times. Furthermore, the wear rates and the coefficients of friction were lower, at higher milling times due to high densities (96\%), and higher elasto-plastic resistance, as presented by the H/E and H3/E2 values of 0.026 and 0.0021 GPa, respectively. Increased milling time enables the refinement of grains and reduction in porosity in the Co-Cr-Mo alloy, which in turn increases the alloy's elasto-plastic resistance and enhances its wear resistance.}, language = {en} } @misc{BouaksaFellahHeziletal., author = {Bouaksa, Fethia and Fellah, Mamoun and Hezil, Naouel and Djellabi, Ridha and Touhami, Mohamed Zine and Iost, Alain and Montagne, Alex and Kosman, Stephania and Weiß, Sabine}, title = {Effect of Thermocyclic Treatment with Different Cooling Rates on the Mechanical Characteristics of 42CD4 Low-Alloy Steel}, series = {Defect and Diffusion Forum}, volume = {397}, journal = {Defect and Diffusion Forum}, issn = {1662-9507}, doi = {10.4028/www.scientific.net/DDF.397.169}, pages = {169 -- 178}, abstract = {The aim of this study was to investigate the influence of thermo-cyclic treatments on the mechanical characteristics (Hardness and Resilience) of low-alloy 42CD4 steel. Thermocyclic treatment on 42CD4 steel was operated for four cycles at 850 °C for 30 min. After each cycle, the steel sample was cooled in different medium (open air and water) in order to check the effect of the cooling rate on the microstructure characteristics. It was found that the cooling rate can affect the mechanical characteristics of the steel. The hardness values of steel cooled in water were higher than those of steel cooled in air. Additionally, there was an increase in the resilience of steel sample with the increase of thermocyclic number.}, language = {en} } @misc{FellahHezilTouhamietal., author = {Fellah, Mamoun and Hezil, Naouel and Touhami, Mohamed Zine and Samad, Mohammed Abdul and Obrosov, Aleksei and Bokov, Dmitry O. and Marchenko, Ekaterina and Montagne, Alex and Iost, Alain and Alhussein, Akram}, title = {Structural, tribological and antibacterial properties of (α + β) based ti-alloys for biomedical applications}, series = {Journal of Materials Research and Technology}, volume = {9}, journal = {Journal of Materials Research and Technology}, number = {6}, issn = {2238-7854}, doi = {10.1016/j.jmrt.2020.09.118}, pages = {14061 -- 14074}, abstract = {Implant-related follow up complications resulting from poor implant integration, delamination, chipping, mechanical instability, inflammation or graft-vs-host reaction may lead to low patient tolerance, prolonged care and sometimes leading to a second surgery. Hence, there is an urgent need for developing biomaterials which will help to overcome the above compatibility problems. Ti based alloys have been widely used for biomedical applications, due to their excellent properties, such as low modulus, high biocompatibility and high corrosion resistance. In order to further improve the physical, mechanical and tribological properties of these alloys, microstructural modification is often required. Hence, this study aims to develop and evaluate the structural and tribological behavior of Hot Isostatic Pressed (HIPed) and sintered Ti-6Al-7Nb samples containing niobium, which is less toxic and less expensive as compared to the usual alloying element, vanadium (Ti-6Al-4 V). The Ti-6Al-7Nb alloys were fabricated by using nanoparticle powders milled for different durations (2, 6, 12 and 18 h) to evaluate the effect of milling time on the morphological and structural properties. Friction and wear tests were carried out on the (HIPed) and finally sintered Ti-6Al-7Nb alloy samples, to evaluate their tribological properties under different applied loads (2, 8 and 16 N), with an alumina α-Al2O3 ball as a counter face using an oscillating tribometer. The physical characterization of the nanopowders formed using different milling times indicated that the particle and crystallite size continually decreased with increasing milling time, while the microstrain increased. It is observed that the friction coefficient and wear rate for the samples prepared by powders milled for 18 h and tested under 2 N were lowest with values of 0.25 and 1.51 × 10-2 μm3∙N-1 μm-1, respectively compared to other milled samples. This improvement in tribological properties is attributed to the grain refinement at high milling times. The antibacterial evaluation of the fabricated alloys showed an improvement in antibacterial performance of the samples milled at 18 h compared to the other milling times.}, language = {en} } @incollection{FellahHezilAbderrahimetal., author = {Fellah, Mamoun and Hezil, Naouel and Abderrahim, Karima and Samad, Mohammed Abdul and Montagne, Alex and Mejias, Alberto and Iost, Alain and Kossman, Stephania and Chekalkin, Timofey and Obrosov, Aleksei and Weiß, Sabine}, title = {Investigating the Effect of Sintering Temperature on Structural and Tribological Properties of a Nanostructured Ti-20Nb-13Zr Alloy for Biomedical Applications}, series = {Characterization of Minerals, Metals, and Materials}, booktitle = {Characterization of Minerals, Metals, and Materials}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36628-5}, issn = {2367-1181}, doi = {10.1007/978-3-030-36628-5_61}, pages = {619 -- 629}, abstract = {β-type Ti-20Nb-13Zr alloys with low Young's modulus were prepared at different sintering temperatures (950, 1050, 1150, and 1250 °C). The morphological and structural characteristics of as-prepared samples were investigated by several methods. Wear tests were conducted using a ball-on-plate type oscillating tribometer under different applied loads (2, 10, and 20 N). The morphological characterization indicated that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach lowest values of 40 nm and 38 nm at 1250 °C, respectively. The relative density of the 1250 °C sintered sample was as high as 98.7\%. Moreover, the higher sintering temperature resulted in higher relative density and closed porosity of the sample. Both the friction coefficient and wear rate were lower in the sample sintered at 1250 °C as compared to other samples. This enhancement in tribological properties was attributed to a closed porosity.}, language = {en} } @misc{DahmaniFellahHeziletal., author = {Dahmani, Marwa and Fellah, Mamoun and Hezil, Naouel and Benoudia, Mohamed-Cherif and Samad, Mohammed Abdul and Alburaikan, Alhanouf and Khalifa, Hamiden Abd El-Wahed and Obrosov, Aleksei}, title = {Structural and mechanical evaluation of a new Ti-Nb-Mo alloy produced by high-energy ball milling with variable milling time for biomedical applications}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {129}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {11-12}, issn = {1433-3015}, doi = {10.1007/s00170-023-12650-0}, pages = {4971 -- 4991}, abstract = {The main focus of this work is to investigate the impact of varying milling times (2 to 18 h) on the structural and mechanical properties of the developed Ti-Nb-Mo alloy. The morphology, phase composition, microstructure, and mechanical behavior of milled and sintered Ti-25Nb-25Mo alloy samples were characterized systematically using x-ray diffraction, scanning electron microscope, optical microscope, and Vicker microhardness. It was noted that the quantity of the β-Ti phase increased as the milling time increased. After 12 h of milling, the synthesized alloys exhibited a spherical morphology and texture with homogeneous distribution. The milled alloys' structural evolution and morphological changes were found to be dependent on their milling duration. Morphological analysis revealed that the crystallite size and mean pore size decreased when the milling duration increased, reaching minimum values of 51 nm and < 1 μm, after 12 and 18 h respectively. As the milling time increased, the grain size decreased, resulting in an increase in density, microhardness, and elastic modulus. Ti-25Nb-25Mo will presents good anti-wear ability and higher resistance to plastic deformation due to enhanced mechanical characteristics (H/E, and H3/E2). Hence, the developed Ti-25Nb-25Mo alloys with reduced elastic modulus and desirable mechanical properties were found to be a promising option for biomedical applications.}, language = {en} } @misc{HezilFellahMontagneetal., author = {Hezil, Naouel and Fellah, Mamoun and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Removal of Chromium (VI) from Water onto Activated Carbon by Adsorption in Dynamic Mode}, series = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, journal = {TMS 2020 149th Annual Meeting \& Exhibition Supplemental Proceedings}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-36295-9}, issn = {2367-1181}, doi = {https://doi.org/10.1007/978-3-030-36296-6_80}, pages = {855 -- 863}, abstract = {Hexavalent chromium pollution from industrial waste water is a serious problem as it can cause adverse effects on the environment. Several methods are used to reduce the harmful effects of this pollutant, especially physico-chemical methods, such as adsorption technology. The present study aims to remove Cr (VI) from industrial sources in a fixed-bed column of activated carbon. The experiments were carried out at natural pH and temperature with a flow rate (5, 10, and 20 mL/min) and bed height (3.5 cm). Breakthrough curves for feed concentrations (0.01, 0.03, and 0.05 mol/L) were investigated. The results indicated a marked decrease up to 99\%. The value of the flow constant for the Thomas model decreased with the increase in the concentration of the incoming substance, but increased with the increase in the flow rate.}, language = {en} } @misc{SaoudiFellahHeziletal., author = {Saoudi, Adel and Fellah, Mamoun and Hezil, Naouel and Lerari, Djahida and Khamouli, Farida and Atoui, L'hadi and Bachari, Khaldoun and Morozova, Iuliia and Obrosov, Aleksei and Samad, Mohammed Abdul}, title = {Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling}, series = {International Journal of Pressure Vessels and Piping}, volume = {186}, journal = {International Journal of Pressure Vessels and Piping}, issn = {0308-0161}, doi = {10.1016/j.ijpvp.2020.104153}, pages = {8}, abstract = {An artificial neural network (ANN) model was developed to predict tensile and impact properties of a submerged arc helical welded (SAHW) pipeline steel API X70 based upon its chemical composition. Weight percent of the elements was considered as the input, while the tensile and Charpy impact properties were considered as the outputs. Scatter diagrams and two statistical parameters (absolute fraction of variance and relative error) were used to evaluate the prediction performance of the developed artificial neural network model. The predicted values were found to be in excellent agreement with the experimental data and the current model has a good learning precision and generalization (for training, validation and testing data sets). The results revealed that the developed model is very accurate and has a strong potential for capturing the interaction between the mechanical properties and chemical composition of welded high strength low alloy (HSLA) steels.}, language = {en} } @misc{FellahHezilDekhiletal., author = {Fellah, Mamoun and Hezil, Naouel and Dekhil, Leila and Samad, Mohammed Abdul and Djellabi, Ridha and Kosman, Stephania and Montagne, Alex and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Effect of sintering temperature on structure and tribological properties of nanostructured Ti-15Mo alloy for biomedical applications}, series = {Transactions of Nonferrous Metals Society of China}, volume = {29}, journal = {Transactions of Nonferrous Metals Society of China}, number = {11}, issn = {1003-6326}, doi = {10.1016/S1003-6326(19)65137-X}, pages = {2310 -- 2320}, abstract = {The effect of sintering temperature (1073-1373 K) on the structural and tribological properties of nanostructured ball-milled β-type Ti-15Mo samples was investigated. The prepared samples were characterized using various apperatus such as X-ray diffractometer, scanning electron microscope (SEM) and ball-on-plate type oscillating tribometer. Wear tests were conducted under different applied loads (2, 8 and 16 N). Structural results showed that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach the lowest values of 4 nm and 29 nm at 1373 K, respectively. The relative density of the sintered sample at 1373 K was as high as 97.0\%. Moreover, a higher sintering temperature resulted in higher relative density, greater hardness and elastic modulus of the sample. It was observed that both the friction coefficient and wear rate were lower in the sample sintered at 1373 K which was attributed to the closed porosity.}, language = {en} } @misc{KhalilFellahHeziletal., author = {Khalil, S. and Fellah, Mamoun and Hezil, Naouel and Smata, L. and Montagne, Alex and Mejias, Alberto and Kossman, Stephania and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Synth{\`e}se et caract{\´e}risation structurale d'un compos{\´e} nanostructur{\´e} de Ti, Mo et Zr pour applications biom{\´e}dicales}, series = {3rd International Conference on Mechanics and Materials : ICMM'2019 11-12 November 2019. Setif, Algeria, Abstracts book}, journal = {3rd International Conference on Mechanics and Materials : ICMM'2019 11-12 November 2019. Setif, Algeria, Abstracts book}, address = {Setif, Algeria}, pages = {243 -- 244}, abstract = {Le milieu m{\´e}dical est un perp{\´e}tuel demandeur de biomat{\´e}riaux compatibles surtout en orthop{\´e}die. Effectivement le nombre important d'arthroplasties effectu{\´e}es chaque ann{\´e}e ne cesse d'augmenter dans le monde, non seulement du fait vieillissement de la population ({\`a} partir de 65 ans), mais aussi de demandes de patients plus jeunes entre 45 ans et 55 ans. Actuellement, les compos{\´e}s {\`a} base de titane Ti sont largement utilis{\´e}s comme des biomat{\´e}riaux pour leur biocompatibilit{\´e}, leur r{\´e}sistance {\`a} la corrosion et leur faible module d'{\´e}lasticit{\´e}. Le molybd{\`e}ne et le zirconium sont parmi les meilleurs {\´e}l{\´e}ments alli{\´e}s parce qu'ils sont non toxiques et non allergiques et offrent d'excellentes propri{\´e}t{\´e}s. De plus,Le Zr peut augmenter la trempabilit{\´e} et la r{\´e}sistance {\`a} la corrosion de l'alliage . Mo est un {\´e}l{\´e}ment fort stabilisant pour la phase des alliages de titane et les alliages {\`a} base de Ti-Mo pr{\´e}sentent des propri{\´e}t{\´e}s m{\´e}caniques ad{\´e}quates compatibilit{\´e} et bonne cyto-compatibilit{\´e} . Par cons{\´e}quent, le syst{\`e}me Ti-Mo-Zr, qui a montr{\´e} une bonnes performances et de magnifiques perspectives dans l'application de biomat{\´e}riaux, a {\´e}t{\´e} intensivement{\´e}tudi{\´e} [1,2,3]. Cependant, les alliages de Ti largement utilis{\´e}s, tels que les interstitiels extra-low (ELI) Ti-6Al-4V (wt.\% en poids ), Ti- 5Al-2,5 Fe et Ti-6Al-7Nb, ont le risque de lib{\´e}rer de l'aluminium toxique (Al) et les Ions de vanadium (V) in vivo, ce qui peut causer des probl{\`e}mes de sant{\´e}, comme la maladie d'Alzheimer et la neuropathie[4].La m{\´e}tallurgie des poudres (MP), y compris la m{\´e}thode de mixture des composants en poudre, qui consiste {\`a} fritter titane en poudre ou ses m{\´e}langes avec d'autres composants en poudre, est un proc{\´e}d{\´e} {\´e}conomique {\`a} moindre cout. La nanotechnologie est intervenue dans la structuration des biomat{\´e}riaux {\`a} l'{\´e}chelle nanom{\´e}trique (entre1nmet 100 nm) par soucis d'am{\´e}lioration des propri{\´e}t{\´e}s m{\´e}canique surtout le module de Young.}, language = {fr} } @misc{FellahHezilDekhiletal., author = {Fellah, Mamoun and Hezil, Naouel and Dekhil, Leila and Samad, Mohammed Abdul and Montagne, Alex and Mejias, Alberto and Iost, Alain and Obrosov, Aleksei and Weiß, Sabine}, title = {Structural characterization of developed near β-Type Titanium Alloys (Ti-25NbxZr) for biomedical Applications}, series = {3rd International Conference on Mechanics and Materials : ICMM'2019 11-12 November 2019. Setif, Algeria, Abstracts book}, journal = {3rd International Conference on Mechanics and Materials : ICMM'2019 11-12 November 2019. Setif, Algeria, Abstracts book}, address = {Setif, Algeria}, pages = {224 -- 225}, abstract = {The osteoarthritis and degenerative diseases osteoporosis as well as trauma lead to the bone mechanical properties degradation due to absence of normal biological self healing processes or excessive loading [1-5]. These problems solution are artificial biomaterials, as surgical implantation of appropriate shapes helps restore function for the otherwise functionally compromised structures [1-5]. Biocompatibility is considered to be optimal once tissue neoformation and later function occurs around implantable devices [6]. The efficacy of biomaterials implants is determined mostly by their surface characteristics such as microstructure, surface morphology, composition and biological properties [2]. Aiming to develop alloys with better properties for orthopedic applications, the focus of the present research was to evaluate the effect of Zr at. \% content on structural, mechanical and tribological properties of hot isostatically pressed Ti-25Nb-xZr (x = 5, 10, 15, 20 and 25 at. \%) alloys. The structural evolution, and mechanical properties of the nanostructured Ti-Nb-xZr alloys were evaluated using X-Ray diffraction, scanning electron microscope. The mechanical properties were performed using Vickers hardness and berkovich nanoindentation. Experimental results indicated that the structural evolution and morphological changes of the milled alloys were sensitive to their Zirconium (at. \%) content. The morphological characterization showed that the crystallite size and the particle size decreased with increasing Zr content (at. \%). As well, as the Zr was added to the Ti-25NbXZr system, there was a clear decrease in the Vickers hardness and young's modulus. On the other hand, the coefficient of friction and wear rates were found to be decreasing with increasing Zr content.}, language = {en} } @misc{FellahHezilBourasetal., author = {Fellah, Mamoun and Hezil, Naouel and Bouras, Dikra and Bouchareb, Nabila and Larios, Alejandro Perez and Obrosov, Aleksei and El-Hiti, Gamal A. and Weiß, Sabine}, title = {Investigating the effect of Zr content on electrochemical and tribological properties of newly developed near β-type Ti-alloys (Ti-25Nb-xZr) for biomedical applications}, series = {Journal of Science: Advanced Materials and Devices}, journal = {Journal of Science: Advanced Materials and Devices}, issn = {2468-2179}, doi = {10.1016/j.jsamd.2024.100695}, abstract = {In order to create alloys with exceptional properties for orthopedic uses, this study focuses on the impact of zirconium (Zr) content on the structural, electrochemical, and tribological qualities of nanostructured Ti-25Nb-xZr [x = 5, 10, 15, 20, 25, and 30 atomic (at.) \%] alloys. The structural evolution was investigated using XRD and SEM techniques. The mechanical characteristics of the produced alloys, including Vickers hardness and Young's modulus, were measured. In addition, the corrosion tests were performed using the OCP, EIS, and PD methods in Ringer's solution within the independent pH range at 37 °C. A ball-on-disc tribometer was used to investigate the tribological behavior of the alloys under various loads and wet conditions using the Ringer solution. It has been verified that Zr content (at. \%) in the alloys had an impact on their morphologies, structural evolution, and mechanical characteristics. According to the morphological analysis, the particle and crystallite size decreases with increasing Zr content. Young's modulus and Vickers hardness show the same tendency. The EIS data demonstrated that a single passive film formed on the alloy surfaces, and the addition of Zr enhanced the corrosion resistance of the passive films. The polarization curves demonstrate that the alloys had low corrosion current densities and large passive areas without the passive films disintegrating. Likewise, the inclusion of Zr resulted in a reduction in the corrosion and passive current densities values. All of these results suggested that the titanium alloys exhibit a more noble electrochemical activity caused by Zr. From the tribological perspective, it was found that the friction coefficient of the alloys reduced with increasing Zr content.}, language = {en} } @misc{FellahHezilHamadietal., author = {Fellah, Mamoun and Hezil, Naouel and Hamadi, Fouzia and Iqbal, Amjad and Samad, Mohammed Abdul and Alburaikan, Alhanouf and Khalifa, Hamiden Abd El-Wahed and Obrosov, Aleksei}, title = {Effect of Fe content on physical, tribological and photocatalytical properties of Ti-6Al-xFe alloys for biomedical applications}, series = {Tribology International}, volume = {191}, journal = {Tribology International}, issn = {1879-2464}, doi = {10.1016/j.triboint.2023.109146}, abstract = {The aim of the current study is to evaluate the effect of iron content (0, 2, 4, 6 and 10 wt\%) on the structural, tribological and photocatalytical properties of a nanostructured ternary alloy Ti-6Al-XFe, prepared by high energy milling. The alloys' characteristics such as lattice parameters, powder morphologies, surface roughness, relative density/porosity, and microhardness, were evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), surface profilometry, porosimeter and micro durometer, respectively. The W-H method was utilized to determine the crystallite size. Micro strain was also calculated, which is produced in the lattice due to the diffusion of iron atoms. The photocatalytical characterization was conducted by measuring their absorbance as a function of time using spectrophotometer of visible and ultraviolet light in the wavelength range of 500-800 nm. The tribological characterization was performed using an oscillating tribometer under wet conditions, simulating the human body environment using Phosphate Buffered Saline (PBS) solution with neutral pH 7.4, under different applied loads of 2, 6 and 10 N, respectively. Results showed that the addition of Fe has a significant effect on the structural properties of the developed alloys. The lattice parameter (aα) decreased with increasing Fe content from 2.9493 {\AA} (0 wt\% Fe) to 2.9491 {\AA} (10 wt\% Fe), while the average grain size increased considerably from 6.965 nm (0 wt\% Fe) to 44.42 nm (10 wt\% Fe). The wear test results showed that, friction coefficient and wear rate considerably decreased due to the formation of protective films such as TiO2. The photocatalytical characterization showed that, the degradation of methylene blue (MB) increased with increasing Fe content. The Ti-6Al-4Fe -catalyst gave the best degree of degradation of 90.76\% within 60 min, which meant that the decolorization process could be operated rapidly at a relatively low cost without UV irradiation.}, language = {en} }