@misc{MannocciBaroniMelacarneetal., author = {Mannocci, Piergiulio and Baroni, Andrea and Melacarne, Enrico and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {In-Memory Principal Component Analysis by Crosspoint Array of Rresistive Switching Memory}, series = {IEEE Nanotechnology Magazine}, volume = {16}, journal = {IEEE Nanotechnology Magazine}, number = {2}, issn = {1932-4510}, doi = {10.1109/MNANO.2022.3141515}, pages = {4 -- 13}, abstract = {In Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrixvector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMCbased PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43\%, close to floatingpoint implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.}, language = {en} }