@misc{BussBraudEwertetal., author = {Buß, Lars and Braud, Nicolas and Ewert, Moritz and Jugovac, Matteo and Mentes, Tevfik Onur and Locatelli, Andrea and Falta, Jens and Flege, Jan Ingo}, title = {In-situ growth characterization of 2D heterostructures: MoSe2 on intercalated graphene/Ru(0001)}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {Despite the great fundamental interest in 2D heterostructures, most of the investigated 2D heterostructures were realized by mechanical exfoliation or chemical vapor deposition in the millibar range, preventing true in-situ characterization of the growth process. Here, we have investigated the growth of MoSe2 on single-layer graphene on Ru(0001) via real-time in-situ low-energy electron microscopy and micro-diffraction. After preparation of the graphene by standard procedures from an ethylene precursor, MoSe2 has been prepared via co-deposition of Mo and Se. Prior Se intercalation of the graphene appears to enhance the subsequent growth of MoSe2 on the graphene. At elevated temperatures, rotational ordering of the MoSe2 is facilitated by the strongly enhanced mobility of single-domain MoSe2 islands that align with the high symmetry orientations of the underlying graphene, indicating a non-negligible interaction between the two van-der-Waals materials. Micro-spot angle-resolved photoemission proves the monolayer nature of the as-grown MoSe2 as well as the free-standing character of the Se-intercalated graphene underneath.}, language = {en} } @misc{BussBraudEwertetal., author = {Buß, Lars and Braud, Nicolas and Ewert, Moritz and Jugovac, Matteo and Mente{\c{s}}, Tevfik Onur and Locatelli, Andrea and Falta, Jens and Flege, Jan Ingo}, title = {Unraveling van der Waals epitaxy: A real-time in-situ study of MoSe2 growth on graphene/Ru(0001)}, series = {Ultramicroscopy}, volume = {250}, journal = {Ultramicroscopy}, issn = {0304-3991}, doi = {10.1016/j.ultramic.2023.113749}, pages = {7}, abstract = {In the present work we investigate the growth of monolayer MoSe2 on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe2 on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe2 flakes. Local micro-spot angle-resolved photoemission spectroscopy reveals the electronic structure of the heterostructure, indicating that no charge transfer occurs within adjacent layers. The observed behavior is attributed to intercalation of Se at the graphene/Ru(0001) interface. The unperturbed nature of the proposed heterostructure therefore renders it as a model system for investigations of graphene supported TMD nanostructures.}, language = {en} } @misc{BraudBussLundgrenetal., author = {Braud, Nicolas and Buß, Lars and Lundgren, Edvin and Merte, Lindsay R. and Wallander, Harald J. and Krisponeit, Jon-Olaf and Locatelli, Andrea and Mentes, Tevfik Onur and Jugovac, Matteo and Flege, Jan Ingo and Falta, Jens}, title = {Cleaning and tailoring the Pt3Sn(111) surface for surface experiments}, series = {Surface Science}, volume = {732}, journal = {Surface Science}, issn = {0039-6028}, doi = {10.1016/j.susc.2023.122281}, abstract = {The cleaning process of the bimetallic Pt3Sn(111) surface has been studied by means of low-energy electron microscopy (LEEM), microspot low-energy electron diffraction (-LEED), and X-ray photoemission electron microscopy (XPEEM). Different cleaning procedures, performed under ultra-high vacuum conditions (UHV), including sputtering with argon ions and repeated cycles of annealing up to 1500 K were investigated. In this work, we show that a clean Pt3Sn(111) surface of high structural quality with a sharp and brilliant (2 × 2) bulk reconstruction in LEED as well as a perfectly smooth surface with terraces of micron size can be achieved by sputtering, annealing at very high temperatures, followed by a subsequent slow (0.09 K/s) and careful cooling procedure. Additionally, we show the possibility of tailoring the Sn concentration in the topmost layers of Pt3Sn(111) as a function of annealing temperature and subsequent cooling rate. Structural changes of the surface are induced by Sn segregation combined with a surface order-disorder transition at 1340 K. Moreover, two new surface reconstructions depending on the cooling rate are reported.}, language = {en} } @misc{JugovacMenteşGenuzioetal., author = {Jugovac, Matteo and Mente{\c{s}}, Tevfik Onur and Genuzio, Francesca and Lachnitt, Jan and Feyer, Vitaliy and Flege, Jan Ingo and Locatelli, Andrea}, title = {Sensitivity to crystal stacking in low-energy electron microscopy}, series = {Applied Surface Science}, volume = {566}, journal = {Applied Surface Science}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2021.150656}, abstract = {In this work we demonstrate the general characteristics of hcp and fcc stacking in low-energy electron reflectivity for transition metal surfaces, by following the restacking during homoepitaxial growth in real-time. For this purpose, the stacking of a model system, single-crystalline Ag islands during layer-by-layer growth at high temperature on O/W(110), is chosen. Multiple scattering calculations are used to model the relation between electron reflectivity and the crystal geometry. The changes in the electron reflectivity are shown to derive from the changes in the stacking sequence of the topmost surface layers. The results allow to distinguish between the hcp and fcc crystalline arrangements at a surface based on typical differences in the reflectivity curves, making the Ag results relevant for a variety of materials with hexagonal surface geometry. In particular, the multiplet structure within the first Bragg peak in the very low electron energy regime is identified with the fcc structure and thus it can be utilized as a fingerprint to determine the stacking sequence.}, language = {en} }