@misc{BundschuhRappelBocketal., author = {Bundschuh, Jana and Rappel, Herbert and Bock, Andreas and Balleisen, Ute and Daiser, Markus and Friedmann, G{\"u}nter and K{\"o}nig, Werner and Miltenberger, Tobias and M{\"u}ller, Manuela and M{\"u}ller, Robert and Poeplau, Norbert and Roosen, Alix and Schlotter, Alexander and Sedlmair, Christian and Weiler, Michael and Thewes, Christoph and Brock, Christopher}, title = {Effects of queen excluders on the colony dynamics of honeybees (Apis mellifera L.) under biodynamic management}, series = {Apidologie}, volume = {55}, journal = {Apidologie}, number = {16}, issn = {1297-9678}, doi = {10.1007/s13592-023-01041-9}, abstract = {The evaluation of beekeeping management practices (BMPs) is important for beekeepers worldwide because their choice affects health and survival of managed honeybee (A. mellifera L.) colonies and touches ethical and economic questions. This study focusses on queen excluders, a common hive addition in contemporary beekeeping. Its impacts are controversially discussed but have not been studied scientifically yet. Within a 4-year participatory on-farm experiment, we assessed the effects on colony dynamics in 64 hives in 8 apiaries during one season in Germany using the Liebefeld estimation method. We found no significant deviation for parameters of colony dynamics between hives managed with and without queen excluders. A qualitative decision-making tool (Pugh decision matrix) facilitated concept selection only for specific beekeepers.}, language = {en} } @misc{BochAllanBirkhoferetal., author = {Boch, Steffen and Allan, Eric and Birkhofer, Klaus and Bossdorf, Oliver and Bl{\"u}thgen, Nico and Christ-Breulmann, Sabina and Diek{\"o}tter, Tim and Dormann, Carsten F. and Gossner, Martin M. and Hallmann, Christine and Hemp, Andreas and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra M. and Kleinebecker, Till and Lange, Markus and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Prati, Daniel and Renner, Swen C. and Rothenw{\"o}hrer, Christoph and Schall, Peter and Schulze, Ernst-Detlef and Socher, Stephanie A. and Tscharntke, Teja and T{\"u}rke, Manfred and Weiner, Christiane N. and Weisser, Wolfgang W. and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Fischer, Markus}, title = {Extensive und j{\"a}hrlich wechselnde Nutzungsintensit{\"a}t f{\"o}rdert den Artenreichtum im Gr{\"u}nland}, series = {ANLIEGEN NATUR}, volume = {38}, journal = {ANLIEGEN NATUR}, number = {1}, issn = {1864-0729}, pages = {86 -- 95}, language = {de} } @misc{MuellerGoryachkoBurkovetal., author = {M{\"u}ller, Klaus and Goryachko, Andriy and Burkov, Yevgen and Schwiertz, Carola and Ratzke, Markus and K{\"o}ble, J. and Reif, J{\"u}rgen and Schmeißer, Dieter}, title = {Scanning Kelvin Probe Microscopy and Photoemission electron microscopy of organic source-drain structures}, series = {Synthetic Metals}, volume = {146}, journal = {Synthetic Metals}, number = {3}, issn = {0379-6779}, pages = {377 -- 382}, abstract = {n order to optimize organic field effect transistors (OFETs), the characterisation of active-layer surfaces in terms of their roughness, chemical composition and distribution of surface potentials is important. We report on high-resolution microscopic mapping of organic source-drain structures with P3HT as the semiconductor by scanning Kelvin probe microscopy (SKPM) and photoemission electron microscopy (PEEM). It was shown that PEEM is able to characterise the surface morphology (roughness), the chemical homogeneity and the composition of organic structures. The two-dimensional mapping of surface potentials by SKPM with applied source-drain voltages is shown to be an important ingredient of OFETs failure mode analysis.}, language = {en} } @misc{MuellerGoryachkoBurkovetal., author = {M{\"u}ller, K. and Goryachko, Andriy and Burkov, Yevgen and Schwiertz, Carola and Ratzke, Markus and K{\"o}ble, J. and Reif, J{\"u}rgen and Schmeißer, Dieter}, title = {Scanning Kelvin probe and photoemission electron microscopy of organic source-drain structures}, series = {Synthetic Metals}, volume = {146}, journal = {Synthetic Metals}, number = {3}, pages = {377 -- 382}, language = {en} } @inproceedings{GeussMuellerPaloumpaetal., author = {Geuss, Markus and M{\"u}ller, Klaus and Paloumpa, Ioanna and Schmeißer, Dieter}, title = {Surface Potential profiling on operating full organic thin film transistors by Kelvin probe force microscopy}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, abstract = {Kelvin-AFM is employed to study all polymer organic thin film transistors which are promising candidates for low cost - low performance applications like active matrix displays, sensors or single-serving devices. We use bottom contact source-drain- electrode structures of different organic materials like carbon-black or graphite plotted on a printing foil. Semiconducting regioregular Poly(3-Hexylthiophene-2,5-diyl) (P3HT) was subsequently deposited by spin coating. Surface potential profiles across the transistor channel were measured by Kelvin-AFM for various source-drain potential differences and signs. We found that contact resistances cause characteristic steps in the surface potential near the channel edges which vary with the electrode material. Furthermore, nonlinearities appear in the potential gradient which possibly give evidence for lateral inhomogeneities of the carrier mobilities. In summary, surface potential imaging with high lateral resolution ( approx. 100 nm) is introduced as a powerful tool for the characterisation of the transistor performance and the selection of suitable low cost electrode materials.}, language = {en} } @misc{ChenGlasauerMuelleretal., author = {Chen, Siyi and Glasauer, Stefan and M{\"u}ller, Hermann J. and Conci, Markus}, title = {Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation}, series = {Journal of Experimental Psychology}, volume = {44}, journal = {Journal of Experimental Psychology}, number = {9}, issn = {1939-1277}, doi = {10.1037/xhp0000540}, pages = {1399 -- 1413}, language = {en} } @inproceedings{MuellerDanzecaGarciaAliaetal., author = {M{\"u}ller, Steffen and Danzeca, Salvatore and Garcia Al{\´i}a, Rub{\´e}n and Brugger, Markus and Weigel, Robert and K{\"o}lpin, Alexander}, title = {Circuit design for a radiation tolerant 2.4 GHz synthesizer based on COTS components}, series = {IEEE Topical Workshop on Internet of Space, 14-17 January 2018, Anaheim, California, USA}, booktitle = {IEEE Topical Workshop on Internet of Space, 14-17 January 2018, Anaheim, California, USA}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-5386-1294-1}, doi = {10.1109/TWIOS.2018.8311400}, pages = {13 -- 16}, language = {en} } @misc{NeyretLeProvostBoesingetal., author = {Neyret, Margot and Le Provost, Ga{\"e}tane and Boesing, Andrea Larissa and Schneider, Florian D. and Baulechner, Dennis and Bergmann, Joana and Vries, Franciska T. de and Fiore-Donno, Anna Maria and Geisen, Stefan and Goldmann, Kezia and Merges, Anna and Saifutdinov, Ruslan A. and Simons, Nadja K. and Tobias, Joseph A. and Zaitsev, Andrey S. and Gossner, Martin M. and Jung, Kirsten and Kandeler, Ellen and Krauss, Jochen and Penone, Caterina and Schloter, Michael and Schulz, Stefanie and Staab, Michael and Wolters, Volkmar and Apostolakis, Antonios and Birkhofer, Klaus and Boch, Steffen and Boeddinghaus, Runa S. and Bolliger, Ralph and Bonkowski, Michael and Buscot, Fran{\c{c}}ois and Dumack, Kenneth and Fischer, Markus and Gan, Huei Ying and Heinze, Johannes and H{\"o}lzel, Norbert and John, Katharina and Klaus, Valentin H. and Kleinebecker, Till and Marhan, Sven and M{\"u}ller, J{\"o}rg and Renner, Swen C. and Rillig, Matthias C. and Schenk, No{\"e}lle V. and Sch{\"o}ning, Ingo and Schrumpf, Marion and Seibold, Sebastian and Socher, Stephanie A. and Solly, Emily F. and Teuscher, Miriam and Kleunen, Mark van and Wubet, Tesfaye and Manning, Peter}, title = {A slow-fast trait continuum at the whole community level in relation to land-use intensification}, series = {Nature Communications}, volume = {15}, journal = {Nature Communications}, number = {1}, issn = {2041-1723}, doi = {10.1038/s41467-024-45113-5}, abstract = {AbstractOrganismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for 2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.}, language = {en} } @misc{EisenhauerFrankWeigeltetal., author = {Eisenhauer, Nico and Frank, Karin and Weigelt, Alexandra and Bartkowski, Bartosz and Beugnon, R{\´e}my and Liebal, Katja and Mahecha, Miguel and Quaas, Martin and Al-Halbouni, Djamil and Bastos, Ana and Bohn, Friedrich J. and Brito, Mariana Madruga de and Denzler, Joachim and Feilhauer, Hannes and Fischer, Rico and Fritsche, Immo and Guimaraes-Steinicke, Claudia and H{\"a}nsel, Martin and Haun, Daniel B. M. and Herrmann, Hartmut and Huth, Andreas and Kalesse-Los, Heike and Koetter, Michael and Kolleck, Nina and Krause, Melanie and Kretschmer, Marlene and Leit{\~a}o, Pedro J. and Masson, Torsten and Mora, Karin and M{\"u}ller, Birgit and Peng, Jian and P{\"o}hlker, Mira L. and Ratzke, Leonie and Reichstein, Markus and Richter, Solveig and R{\"u}ger, Nadja and S{\´a}nchez-Parra, Beatriz and Shadaydeh, Maha and Sippel, Sebastian and Tegen, Ina and Thr{\"a}n, Daniela and Umlauft, Josefine and Wendisch, Manfred and Wolf, Kevin and Wirth, Christian and Zacher, Hannes and Zaehle, S{\"o}nke and Quaas, Johannes}, title = {A belowground perspective on the nexus between biodiversity change, climate change, and human well-being}, series = {Journal of Sustainable Agriculture and Environment}, volume = {3}, journal = {Journal of Sustainable Agriculture and Environment}, number = {2}, publisher = {Wiley}, issn = {2767-035X}, doi = {10.1002/sae2.12108}, pages = {12}, abstract = {Soil is central to the complex interplay among biodiversity, climate, and society. This paper examines the interconnectedness of soil biodiversity, climate change, and societal impacts, emphasizing the urgent need for integrated solutions. Human-induced biodiversity loss and climate change intensify environmental degradation, threatening human well-being. Soils, rich in biodiversity and vital for ecosystem function regulation, are highly vulnerable to these pressures, affecting nutrient cycling, soil fertility, and resilience. Soil also crucially regulates climate, influencing energy, water cycles, and carbon storage. Yet, climate change poses significant challenges to soil health and carbon dynamics, amplifying global warming. Integrated approaches are essential, including sustainable land management, policy interventions, technological innovations, and societal engagement. Practices like agroforestry and organic farming improve soil health and mitigate climate impacts. Effective policies and governance are crucial for promoting sustainable practices and soil conservation. Recent technologies aid in monitoring soil biodiversity and implementing sustainable land management. Societal engagement, through education and collective action, is vital for environmental stewardship. By prioritizing interdisciplinary research and addressing key frontiers, scientists can advance understanding of the soil biodiversity-climate change-society nexus, informing strategies for environmental sustainability and social equity.}, language = {en} } @misc{StoecklMuellerStrandetal., author = {St{\"o}ckl, Florian and M{\"u}ller, Silvan and Strand, Marcus and Gardill, Markus}, title = {Design and evaluation of a low-cost mount for attaching a laser tracker's SMR to a robot flange}, series = {Sensors}, volume = {25}, journal = {Sensors}, number = {1}, doi = {10.3390/s25010184}, pages = {1 -- 18}, abstract = {Robot calibration and modelling measurements are commonly performed using a laser tracker. To capture three-dimensional positions, a SMR is attached to the robot. While some researchers employ adhesive bonds for this purpose, such methods often result in inaccurate, unstable and non-repeatable SMR positioning, adversely affecting measurement precision and the traceability of research outcomes. To address these challenges, we investigated alternative methods for attaching an SMR to a robot's flange to achieve both accuracy and repeatability. Additionally, we analysed measurement errors introduced when using a tool to attach the SMR to the flange. As a solution, we developed a 3D-printed mount designed for attachment to the flange. The mount's accuracy was evaluated by assessing its eccentricity and the repeatability of the SMR placement. Experimental results demonstrated that the mount achieved an eccentricity radius of 0.35 mm and repeatability inaccuracies of 𝑋=0.075mm, 𝑌=0.328mm, and 𝑍=0.485mm. These values indicate that the mount provides sufficient accuracy to support calibration processes, ensures research traceability, and serves as a viable replacement for adhesive bonds.}, language = {en} }