@misc{SeiboldCapatiGrillietal., author = {Seibold, G{\"o}tz and Capati, Matteo and Grilli, Marco and Di Castro, Carlo and Grilli, Marco and Lorenzana, Jos{\´e}}, title = {Hidden ferronematic order in underdoped cuprates}, series = {Physical Review B}, volume = {87}, journal = {Physical Review B}, number = {3}, issn = {2469-9969}, doi = {10.1103/PhysRevB.87.035138}, pages = {035138}, abstract = {We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order-parameter-like temperature dependence.}, language = {en} } @misc{SeiboldCapraraGrillietal., author = {Seibold, G{\"o}tz and Caprara, Sergio and Grilli, Marco and Raimondi, Roberto}, title = {Theory of the Spin Galvanic Effect at Oxide Interfaces}, series = {Physical Review Letters}, volume = {119}, journal = {Physical Review Letters}, number = {25}, issn = {1092-0145}, doi = {10.1103/PhysRevLett.119.256801}, abstract = {The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3. Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.}, language = {en} } @article{SeiboldGrilli, author = {Seibold, G{\"o}tz and Grilli, Marco}, title = {Influence of incommensurate dynamic charge-density wave scatteringon the line shape of superconducting high-Tc cuprates}, series = {Physical Review B}, volume = {63}, journal = {Physical Review B}, number = {22}, issn = {1550-235X}, pages = {224505}, language = {en} } @misc{SeiboldGrilliLorenzana, author = {Seibold, G{\"o}tz and Grilli, Marco and Lorenzana, A.}, title = {Dynamics of Electronic Inhomogeneities in Cuprates}, language = {en} } @misc{SeiboldGrilli, author = {Seibold, G{\"o}tz and Grilli, Marco}, title = {Influence of incommensurate dynamic charge-density wave scattering on the line shape of supersonducting high-Tc cuprates}, series = {Physical review : B}, journal = {Physical review : B}, number = {22}, issn = {1098-0121}, pages = {S. 224505}, language = {en} } @misc{SeiboldCapraraGrillietal., author = {Seibold, G{\"o}tz and Caprara, Sergio and Grilli, Marco and Raimondi, Roberto}, title = {Intrinsic spin Hall effect in systems with striped spin-orbit coupling}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {112}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {1}, issn = {1286-4854}, doi = {http://dx.doi.org/10.1209/0295-5075/112/17004}, pages = {17004-p1 -- 17004-p6}, language = {en} } @misc{BovenziFinocchiaroScopignoetal., author = {Bovenzi, Nicolo and Finocchiaro, Francesca and Scopigno, Nicantro and Bucheli, Daniel and Caprara, Sergio and Seibold, G{\"o}tz and Grilli, Marco}, title = {Possible Mechanisms of Electronic Phase Separation in Oxide Interfaces}, series = {Journal of Superconductivity and Novel Magnetism}, volume = {28}, journal = {Journal of Superconductivity and Novel Magnetism}, number = {4}, issn = {1557-1939}, doi = {10.1007/s10948-014-2903-7}, pages = {1273 -- 1277}, abstract = {LaAlO 3/SrTiO 3 and LaTiO 3/SrTiO 3 (LXO / STO) interfaces are known to host a strongly inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work, we present three unconventional electronic mechanisms of electronic phase separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide interfaces. Common to all three mechanisms is the dependence of some (interaction) potential on the 2DEGs density. We first consider a mechanism resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we point out that an EPS may also occur in the case of a density-dependent superconducting pairing interaction. Finally, we show that the confinement of the 2DEG to the interface by a density-dependent, self-consistent electrostatic potential can by itself cause an EPS.}, language = {en} } @misc{CapraraDiCastroMirarchietal., author = {Caprara, Sergio and Di Castro, Carlo and Mirarchi, Giovanni and Seibold, G{\"o}tz and Grilli, Marco}, title = {Dissipation-driven strange metal behavior}, series = {Communications Physics}, journal = {Communications Physics}, number = {5}, issn = {2399-3650}, doi = {10.1038/s42005-021-00786-y}, pages = {1 -- 7}, abstract = {Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals.}, language = {en} } @misc{SeiboldArpaiaYingYingetal., author = {Seibold, G{\"o}tz and Arpaia, Riccardo and Ying Ying, Peng and Fumagalli, Roberto and Braicovich, Lucio and Di Castro, Carlo and Grilli, Marco and Ghiringhelli, Giacomo Claudio and Caprara, Sergio}, title = {Strange metal behaviour from charge density fluctuations in cuprates}, series = {Communications Physics}, volume = {4}, journal = {Communications Physics}, issn = {2399-3650}, doi = {10.1038/s42005-020-00505-z}, pages = {1 -- 6}, abstract = {Besides the mechanism responsible for high critical temperature superconductivity, the grand unresolved issue of the cuprates is the occurrence of a strange metallic state above the so-called pseudogap temperature T*. Even though such state has been successfully described within a phenomenological scheme, the so-called Marginal Fermi-Liquid theory, a microscopic explanation is still missing. However, recent resonant X-ray scattering experiments identified a new class of charge density fluctuations characterized by low characteristic energies and short correlation lengths, which are related to the well-known charge density waves. These fluctuations are present over a wide region of the temperature-vs-doping phase diagram and extend well above T*. Here we investigate the consequences of charge density fluctuations on the electron and transport properties and find that they can explain the strange metal phenomenology. Therefore, charge density fluctuations are likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates.}, language = {en} } @misc{OelsenDiCioloLorenzanaetal., author = {Oelsen, E. von and Di Ciolo, A. and Lorenzana, Jos{\´e} and Seibold, G{\"o}tz and Grilli, Marco}, title = {Phonon renormalization from local and transitive electron-latticecouplings in strongly correlated systems}, language = {en} }