@misc{SeiboldCapatiGrillietal., author = {Seibold, G{\"o}tz and Capati, Matteo and Grilli, Marco and Di Castro, Carlo and Grilli, Marco and Lorenzana, Jos{\´e}}, title = {Hidden ferronematic order in underdoped cuprates}, series = {Physical Review B}, volume = {87}, journal = {Physical Review B}, number = {3}, issn = {2469-9969}, doi = {10.1103/PhysRevB.87.035138}, pages = {035138}, abstract = {We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order-parameter-like temperature dependence.}, language = {en} } @misc{SeiboldCapraraGrillietal., author = {Seibold, G{\"o}tz and Caprara, Sergio and Grilli, Marco and Raimondi, Roberto}, title = {Theory of the Spin Galvanic Effect at Oxide Interfaces}, series = {Physical Review Letters}, volume = {119}, journal = {Physical Review Letters}, number = {25}, issn = {1092-0145}, doi = {10.1103/PhysRevLett.119.256801}, abstract = {The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3. Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.}, language = {en} } @misc{CapraraDiCastroMirarchietal., author = {Caprara, Sergio and Di Castro, Carlo and Mirarchi, Giovanni and Seibold, G{\"o}tz and Grilli, Marco}, title = {Dissipation-driven strange metal behavior}, series = {Communications Physics}, journal = {Communications Physics}, number = {5}, issn = {2399-3650}, doi = {10.1038/s42005-021-00786-y}, pages = {1 -- 7}, abstract = {Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals.}, language = {en} } @misc{SeiboldArpaiaYingYingetal., author = {Seibold, G{\"o}tz and Arpaia, Riccardo and Ying Ying, Peng and Fumagalli, Roberto and Braicovich, Lucio and Di Castro, Carlo and Grilli, Marco and Ghiringhelli, Giacomo Claudio and Caprara, Sergio}, title = {Strange metal behaviour from charge density fluctuations in cuprates}, series = {Communications Physics}, volume = {4}, journal = {Communications Physics}, issn = {2399-3650}, doi = {10.1038/s42005-020-00505-z}, pages = {1 -- 6}, abstract = {Besides the mechanism responsible for high critical temperature superconductivity, the grand unresolved issue of the cuprates is the occurrence of a strange metallic state above the so-called pseudogap temperature T*. Even though such state has been successfully described within a phenomenological scheme, the so-called Marginal Fermi-Liquid theory, a microscopic explanation is still missing. However, recent resonant X-ray scattering experiments identified a new class of charge density fluctuations characterized by low characteristic energies and short correlation lengths, which are related to the well-known charge density waves. These fluctuations are present over a wide region of the temperature-vs-doping phase diagram and extend well above T*. Here we investigate the consequences of charge density fluctuations on the electron and transport properties and find that they can explain the strange metal phenomenology. Therefore, charge density fluctuations are likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates.}, language = {en} } @misc{OelsenDiCioloLorenzanaetal., author = {Oelsen, E. von and Di Ciolo, A. and Lorenzana, Jos{\´e} and Seibold, G{\"o}tz and Grilli, Marco}, title = {Phonon renormalization from local and transitive electron-latticecouplings in strongly correlated systems}, language = {en} } @article{LorenzanaSeiboldOrtixetal., author = {Lorenzana, Jos{\´e} and Seibold, G{\"o}tz and Ortix, C. and Grilli, Marco}, title = {Competing orders in FeAs layers}, language = {en} } @misc{DiCioloLorenzanaGrillietal., author = {Di Ciolo, A. and Lorenzana, Jos{\´e} and Grilli, Marco and Seibold, G{\"o}tz}, title = {Charge instabilities and electron-phonon interaction in the Hubbard-Holstein model}, series = {Physical Review B}, volume = {79}, journal = {Physical Review B}, issn = {1550-235X}, pages = {085101}, language = {en} } @misc{MirarchiSeiboldDiCastroetal., author = {Mirarchi, Giovanni and Seibold, G{\"o}tz and Di Castro, Carlo and Grilli, Marco and Caprara, Sergio}, title = {The Strange-Metal Behavior of Cuprates}, series = {Condensed Matter}, volume = {7}, journal = {Condensed Matter}, number = {1}, issn = {2410-3896}, doi = {10.3390/condmat7010029}, pages = {1 -- 17}, abstract = {Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.}, language = {en} } @misc{SeiboldBeccaBuccietal., author = {Seibold, G{\"o}tz and Becca, Federico and Bucci, F. and Castellani, Claudio and Di Castro, Carlo and Grilli, Marco}, title = {Spectral properties of incommensurate charge-density wave systems}, language = {en} } @article{DiCioloLorenzanaSeiboldetal., author = {Di Ciolo, A. and Lorenzana, Jos{\´e} and Seibold, G{\"o}tz and Grilli, Marco}, title = {Paramagnetic stripes in cuprates: charge inhomogeneity coexisting with large Fermi surfaces}, language = {en} }