@misc{PerezMaldonadoMahadevaiahetal., author = {Perez, Eduardo and Maldonado, David and Mahadevaiah, Mamathamba Kalishettyhalli and Perez-Bosch Quesada, Emilio and Cantudo, Antonio and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {A comparison of resistive switching parameters for memristive devices with HfO2 monolayers and Al2O3/HfO2 bilayers at the wafer scale}, series = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, journal = {14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-0240-0}, doi = {10.1109/CDE58627.2023.10339417}, pages = {5}, abstract = {Memristive devices integrated in 200 mm wafers manufactured in 130 nm CMOS technology with two different dielectrics, namely, a HfO2 monolayer and an Al2O3/HfO2 bilayer, have been measured. The cycle-to-cycle (C2C) and device-todevice (D2D) variability have been analyzed at the wafer scale using different numerical methods to extract the set (Vset) and reset (Vreset) voltages. Some interesting differences between both technologies were found in terms of switching characteristics}, language = {en} } @misc{MaldonadoCantudoPerezetal., author = {Maldonado, David and Cantudo, Antonio and Perez, Eduardo and Romero-Zaliz, Rocio and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Jimenez-Molinos, Francisco and Wenger, Christian and Roldan, Juan Bautista}, title = {TiN/Ti/HfO2/TiN Memristive Devices for Neuromorphic Computing: From Synaptic Plasticity to Stochastic Resonance}, series = {Frontiers in Neuroscience}, volume = {17}, journal = {Frontiers in Neuroscience}, issn = {1662-4548}, doi = {10.3389/fnins.2023.1271956}, abstract = {We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing. We analyze different features that allow the devices to mimic biological synapses and present the models to reproduce analytically some of the data measured. In particular, we have measured the spike timing dependent plasticity behavior in our devices and later on we have modeled it. The spike timing dependent plasticity model was implemented as the learning rule of a spiking neural network that was trained to recognize the MNIST dataset. Variability is implemented and its influence on the network recognition accuracy is considered accounting for the number of neurons in the network and the number of training epochs. Finally, stochastic resonance is studied as another synaptic feature.It is shown that this effect is important and greatly depends on the noise statistical characteristics.}, language = {en} } @misc{PerezMaldonadoPerezBoschQuesadaetal., author = {Perez, Eduardo and Maldonado, David and Perez-Bosch Quesada, Emilio and Mahadevaiah, Mamathamba Kalishettyhalli and Jimenez-Molinos, Francisco and Wenger, Christian}, title = {Parameter Extraction Methods for Assessing Device-to-Device and Cycle-to-Cycle Variability of Memristive Devices at Wafer Scale}, series = {IEEE Transactions on Electron Devices}, volume = {70}, journal = {IEEE Transactions on Electron Devices}, number = {1}, issn = {0018-9383}, doi = {10.1109/TED.2022.3224886}, pages = {360 -- 365}, abstract = {The stochastic nature of the resistive switching (RS) process in memristive devices makes device-to-device (DTD) and cycle-to-cycle (CTC) variabilities relevant magnitudes to be quantified and modeled. To accomplish this aim, robust and reliable parameter extraction methods must be employed. In this work, four different extraction methods were used at the production level (over all the 108 devices integrated on 200-mm wafers manufactured in the IHP 130-nm CMOS technology) in order to obtain the corresponding collection of forming, reset, and set switching voltages. The statistical analysis of the experimental data (mean and standard deviation (SD) values) was plotted by using heat maps, which provide a good summary of the whole data at a glance and, in addition, an easy manner to detect inhomogeneities in the fabrication process.}, language = {en} } @misc{PerezMaldonadoAcaletal., author = {Perez, Eduardo and Maldonado, David and Acal, Christian and Ruiz-Castro, Juan Eloy and Aguilera, Ana Mar{\´i}a and Jimenez-Molinos, Francisco and Roldan, Juan Bautista and Wenger, Christian}, title = {Advanced Temperature Dependent Statistical Analysis of Forming Voltage Distributions for Three Different HfO2-Based RRAM Technologies}, series = {Solid State Electronics}, volume = {176}, journal = {Solid State Electronics}, issn = {0038-1101}, pages = {6}, abstract = {In this work, voltage distributions of forming operations are analyzed by using an advanced statistical approach based on phase-type distributions (PHD). The experimental data were collected from batches of 128 HfO2-based RRAM devices integrated in 4-kbit arrays. Three di erent switching oxides, namely, polycrystalline HfO2, amorphous HfO2, and Al-doped HfO2, were tested in the temperature range from -40 to 150 oC. The variability of forming voltages has been usually studied by using the Weibull distribution (WD). However, the performance of the PHD analysis demonstrated its ability to better model this crucial operation. The capacity of the PHD to reproduce the experimental data has been validated by means of the Kolmogorov-Smirnov test, while the WD failed in many of the cases studied. In addition, PHD allows to extract information about intermediate probabilistic states that occur in the forming process and the transition probabilities between them; in this manner, we can deepen on the conductive lament formation physics. In particular, the number of intermediate states can be related to the device variability.}, language = {en} }