@inproceedings{ŁobazaKotSchmeisser, author = {Łobaza, Justyna and Kot, Małgorzata and Schmeißer, Dieter}, title = {Analysis of surface oxidation of TiON ALD films}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 202}, abstract = {Titanium oxynitride (TiON) films are interesting due to their remarkable optical and electronic properties which strongly depend on the O/N ratio. However, it is known that films containing Ti are prone to oxidation in contact with the air [1]. In this work, we study the thickness of a surface oxidation layer which is inherently formed on the atomic layer deposition (ALD) grown TiON/TiN films on Si substrate. We use an Ar+ ion bombardment source and X-ray photoelectron spectroscopy (XPS) for this analysis. We calibrate the sputter rate by using substrate signal intensity decay (here Si 2p) in the XPS spectra of the 5 nm thick TiON sample accordingly. This rate is assumed to be constant when films with a larger thickness are analyzed. We find that the surface oxidation layer is about 1 nm thick, independent on the detailed ALD parameters of the films. The TiN films found underneath are close to the stoichiometric values and have a residual O content below 5\%. Finally, we compare these data to our previous results collected with synchrotron-based radiation source [2,3]. References: [1] Sowinska et al., Applied Physics Letters 100, 233509 (2012). [2] M. Sowinska et al., Applied Surface Science 381, 42-47 (2016). [3] M. Sowińska et al., Journal of Vacuum Science and Tech- nology A, 01A12734 (2016).}, language = {en} } @inproceedings{KotNaumannGarainetal., author = {Kot, Małgorzata and Naumann, Franziska and Garain, Samiran and Po{\'{z}}arowska, Emilia and Gargouri, Hassan and Henkel, Karsten and Schmeißer, Dieter}, title = {Aluminum nitride films prepared by plasma atomic layer deposition using different plasma sources}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Band 53,3}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Band 53,3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 170}, abstract = {Aluminum nitride (AlN) thin films are promising for versatile applications in optoelectronics, electronics, piezoelectrics, and acoustics due to their remarkable properties such as wide band gap, high dielectric constant, low electrical conductivity, good piezoelectric coefficient and high ultrasonic velocity. We present a comparative study of AlN films grown by plasma-enhanced atomic layer deposition at 350°C silicon wafers in the SENTECH SI ALD LL system using TMA and NH3 where either a capacitively coupled plasma (CCP) or a direct PTSA (planar triple spiral antenna) source was applied. The films were characterized by ellipsometry, XPS and electrical measurements. The layer properties are discussed concerning the varied ALD process parameters. In general, the process using the direct PTSA source delivered films with higher refractive index and better homogeneity over the wafer achieving also higher growth rates per cycle (GPC) in reduced total cycle durations. Films with refractive index in the range of 2.05 and permittivity around 8 could be realized with a GPC of 1.54 {\AA}/cycle.}, language = {en} } @inproceedings{KotKegelmannKusetal., author = {Kot, Małgorzata and Kegelmann, Lukas and Kus, Peter and Tsud, Nataliya and Matol{\´i}nov{\´a}, Iva and Albrecht, Steve and Matolin, Vladimir and Schmeißer, Dieter}, title = {Room temperature atomic layer deposition for perovskite solar cells}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Band 53,3}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft, Reihe 6, Band 53,3}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 174}, abstract = {After few years of efficiency driven research on perovskite solar cells, the focus now is shifting to understand the underlying processes governing the high efficiency and also to obtain long-term stable devices. Among various deposition methods, atomic layer deposition (ALD) may represent one of the best options, being possible to coat substrates in a very efficient way and at very low temperatures. In our previous work [1] we reported that the efficiency of the solar cell containing aged perovskite film can be enhanced twice while covering the perovskite with a thin ALD alumina film at room temperature. In this work, the chemical, electronic and morphological properties of the fresh perovskite film treated by ALD pulses of the trimethylaluminium and water at room temperature investigated using X-ray Photoelectron Spectroscopy and Field Emission Scanning Electron Microscopy will be discused and correlated with the solar cells performance and stability. [1] M. Kot et al., ChemSusChem 2016, 9, 3401.}, language = {en} } @incollection{SchmeisserKotCorreaetal., author = {Schmeißer, Dieter and Kot, Małgorzata and Corr{\^e}a, Silma Alberton and Das, Chittaranjan and Henkel, Karsten}, title = {Interface Potentials, Intrinsic Defects, and Passivation Mechanisms in Al₂O₃, HfO₂, and TiO₂ Ultrathin Films}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, vol. 3.1}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, vol. 3.1}, editor = {Wandelt, Klaus}, publisher = {Elsevier}, address = {Oxford}, isbn = {978-0-12-809739-7}, doi = {10.1016/B978-0-12-409547-2.14119-8}, pages = {162 -- 171}, abstract = {We study the electronic structure of ultrathin Al₂O₃, HfO₂, and TiO₂ ALD films by resonant photoelectron spectroscopy. We identify intrinsic defects which are responsible for the active sites in interface reactions, for the incorporation of intrinsic charges, and for the formation of local dipole momenta. All of these features determine the surface potentials and the reactivity of the surface of the atomic layer deposition coated systems. We give examples of charges and dipoles in Al₂O₃, on a study of the surface potentials in HfO₂, and relate the intrinsic defects in TiO₂ to their electrochemical relevance.}, language = {en} } @misc{DasKotHellmannetal., author = {Das, Chittaranjan and Kot, Małgorzata and Hellmann, Tim and Wittich, Carolin and Mankel, Eric and Zimmermann, Iwan and Schmeißer, Dieter and Nazeeruddin, Mohammad Khaja and Jaegermann, Wolfram}, title = {Atomic Layer-Deposited Aluminum Oxide Hinders Iodide Migration and Stabilizes Perovskite Solar Cells}, series = {Cell Reports Physical Science}, volume = {1}, journal = {Cell Reports Physical Science}, number = {7}, issn = {2666-3864}, doi = {10.1016/j.xcrp.2020.100112}, pages = {18}, abstract = {Iodide migration causes degradation of the perovskite solar cells. Here,we observe the direct migration of iodide into the hole-transport layer in a device. We demonstrate that ultrathin room temperature atomic layer-deposited Al2O3 on the perovskite surface very effectively hinders the migration. The perovskite-Al2O3 interface enables charge transfer across the Al2O3 layer in the solar cells, without causing any drastic changes in the properties of the perovskite absorber. Furthermore, it helps to preserve the initial properties of the perovskite film during exposure to light and air under real operating conditions, and thus, improves the stability of the solar cells. The ultrathin Al2O3 layer deposited at room temperature significantly increases the lifetime of the perovskite solar cells, and we hope this may be a step toward the mass production of stable devices.}, language = {en} } @misc{KotKegelmannKoebleretal., author = {Kot, Małgorzata and Kegelmann, Lukas and K{\"o}bler, Hans and Vorokhta, Mykhailo and Escudero, Carlos and K{\´u}š, Peter and Šm{\´i}d, Břetislav and Tallarida, Massimo and Albrecht, Steve and Abate, Antonio and Matol{\´i}nov{\´a}, Iva and Schmeißer, Dieter and Flege, Jan Ingo}, title = {In situ Near-Ambient Pressure X-ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite}, series = {ChemSusChem}, volume = {13}, journal = {ChemSusChem}, number = {21}, issn = {1864-5631}, doi = {10.1002/cssc.202001527}, pages = {5722 -- 5730}, abstract = {For several years, scientists have been trying to understand the mechanisms that reduce the long-term stability of perovskite solar cells. In this work, we examined the effect of water and photon flux on the stability of CH3NH3PbI3 perovskite films and solar cells using in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), field emission scanning electron microscopy (FESEM), and current density-voltage (J-V) characterization. The used amount of water vapor (up to 1 mbar) had a negligible impact on the perovskite film. The higher the photon flux, the more prominent were the changes in the NAP-XPS and FESEM data; also, a faster decline in power conversion efficiency (PCE) and a more substantial hysteresis in the J-V characteristics were observed. Based on our results, it can be concluded that the PCE decrease originates from the creation of Frenkel pair defects in the perovskite film under illumination. The stronger the illumination, the higher the number of Frenkel defects, leading to a faster PCE decline and more substantial hysteresis in the J-V sweeps.}, language = {en} } @misc{MahmoodinezhadMoralesNaumannetal., author = {Mahmoodinezhad, Ali and Morales, Carlos and Naumann, Franziska and Plate, Paul and Meyer, Robert and Janowitz, Christoph and Henkel, Karsten and Kot, Małgorzata and Flege, Jan Ingo}, title = {Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma}, series = {Verhandlungen der DPG - SurfaceScience21}, volume = {2021}, journal = {Verhandlungen der DPG - SurfaceScience21}, publisher = {Deutsche Physikalische Gesellschaft e.V.}, address = {Bad Honnef}, abstract = {Indium oxide thin films were deposited on Si (100) by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium (TMIn) and oxygen plasma (O2) in a low-temperature range of 80 to 200 °C. The In2O3 layers were characterized by in-situ spectroscopic ellipsometry (SE), ex-situ X-ray photoelectron spectroscopy (XPS) and electrical measurements. The SE data show a growth rate of 0.56 {\AA}/cycle within the ALD window (100 to 150 °C) with a thickness inhomogeneity of ≤1.2\%. In addition, the highest refractive index is 2.07 (at 632.8 nm) for the layer grown at 150 °C, and the films exhibit indirect and direct band gaps of 2.8±0.1 eV and 3.3±0.2 eV, respectively. XPS characterization indicates no carbon incorporation and a temperature-dependent off-stoichiometry of the layers. The chemical analysis of the In 3d and O 1s core levels confirms the formation of In-O bonds and suggests the additional presence of hydroxyl groups and defects. With increasing temperature, the contribution of OH groups and defects decreases whereas that of In-O bonds increases. Notably, higher growth temperatures result in an indium rich phase within the layers.}, language = {en} } @misc{KruszyńskaOstapkoOzkayaetal., author = {Kruszyńska, Joanna and Ostapko, Jakub and Ozkaya, Veysel and Surucu, Belkis and Szawcow, Oliwia and Nikiforow, Kostiantyn and Hołdyński, Marcin and Tavakoli, Mohammad Mahdi and Yadav, Pankaj and Kot, Małgorzata and Kołodziej, Grzegorz Piotr and Wlazło, Mateusz and Satapathi, Soumitra and Akin, Seckin and Prochowicz, Daniel}, title = {Atomic Layer Engineering of Aluminum-Doped Zinc Oxide films for Efficient and Stable Perovskite Solar Cells}, series = {Advanced Materials Interfaces}, volume = {9}, journal = {Advanced Materials Interfaces}, number = {17}, issn = {2196-7350}, doi = {10.1002/admi.202200575}, pages = {8}, abstract = {Atomic layer deposition (ALD) has been considered as an efficient method to deposit high quality and uniform thin films of various electron transport materials for perovskite solar cells (PSCs). Here, the effect of deposition sequence in the ALD process of aluminum-doped zinc oxide (AZO) films on the performance and stability of PSCs is investigated. Particularly, the surface of AZO film is terminated by diethylzinc (DEZ)/H2O (AZO-1) or trimethylaluminum (TMA)/H2O pulse (AZO-2), and investigated with surface-sensitive X-ray photoelectron spectroscopy technique. It is observed that AZO-2 significantly enhances the thermal stability of the upcoming methylammonium lead iodide (MAPbI3) layer and facilitates charge transport at the interface as evidenced by photoluminescence spectroscopes and favorable interfacial band alignment. Finally, planar-type PSC with AZO-2 layer exhibits a champion power conversion efficiency of 18.09\% with negligible hysteresis and retains 82\% of the initial efficiency after aging for 100 h under ambient conditions (relative humidity 40 ± 5\%). These results highlight the importance of atomic layer engineering for developing efficient and stable PSCs.}, language = {en} } @misc{DasKediaZuoetal., author = {Das, Chittaranjan and Kedia, Mayank and Zuo, Weiwei and Mortan, Claudiu and Kot, Małgorzata and Flege, Jan Ingo and Saliba, Michael}, title = {Band Bending at Hole Transporting Layer-Perovskite Interfaces in n-i-p and in p-i-n Architecture}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {9}, issn = {2367-198X}, doi = {10.1002/solr.202200348}, abstract = {Interfaces between hybrid perovskite absorber and its adjacent charge-transporting layers are of high importance for solar cells performance. Understanding their chemical and electronic properties is a key step in designing efficient and stable perovskite solar cells. In this work, the tapered cross-section photoemission spectroscopy (TCS-PES) method is used to study the methylammonium lead iodide (CH3NH3PbI3) (MAPI)-based solar cells in two configurations, that is, in an inverted p-i-n and in a classical n-i-p architecture. It is revealed in the results that the MAPI film deposited once on the n-type TiO2 and once on the p-type NiOx substrates is neither an intrinsic semiconductor nor adapts to the dopant nature of the substrate underneath, but it is heavily n-type doped on both substrates. In addition to that, the TCS-PES results identify that the band bending between the MAPI film and the hole transporting layer (HTL) layer depends on the perovskite solar cells architecture. In particular, a band bending on the HTL side in the n-i-p and at the MAPI in the p-i-n architecture is found. The flat band of NiOx at the NiOx/MAPI interface can be explained by the Fermi level pinning of the NiOx at the interface.}, language = {en} } @misc{KotDasKegelmannetal., author = {Kot, Małgorzata and Das, Chittaranjan and Kegelmann, Lukas and K{\"o}bler, Hans and Vorokhta, Mykhailo and Escudero, Carlos and Albrecht, Steve and Abate, Antonio and Flege, Jan Ingo}, title = {Application of atomic layer deposition and x-ray photoelectron spectroscopy in perovskite solar cells}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {In this work we have utilized near-ambient pressure and ultra-high vacuum X-ray photoelectron spectroscopy as well as atomic layer deposition to investigate perovskite solar cells (PSCs). We have demonstrated that ultrathin room temperature atomic layer-deposited aluminium oxide on the perovskite surface very effectively suppresses iodine migration[1] and improves the long term stability and efficiency of PSCs [2,3]. Furthermore, exposure to light proves more detrimental to the perovskite film than exposure to water vapor.[2] Absorbed photons create Frenkel defects in the perovskite crystal and their number strongly depends on the used illumination. The higher the photon flux, the higher the concentration of Frenkel defects, and thus the stronger the degradation of power conversion efficiency and the stronger the hysteresis in the J-V characteristics. [1] C. Das, M. Kot et al., Cell Reports Physical Science 2020, 1, 100112. [2] M. Kot et al., ChemSusChem 2020, 13, 5722. [3] M. Kot et al., ChemSusChem 2018, 11, 3640.}, language = {en} } @misc{MahmoodinezhadMoralesKotetal., author = {Mahmoodinezhad, Ali and Morales, Carlos and Kot, Małgorzata and Naumann, Franziska and Plate, Paul and Henkel, Karsten and Flege, Jan Ingo}, title = {A super-cycle approach to atomic layer deposition of indium-gallium-zinc oxide at low temperature}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {The continuing development of multifunctional devices needs novel multicomponent oxide layers, demanding a high control of both composition and thickness during their preparation. To this end, single metal oxides exhibiting high structural quality and conformity have successfully been grown by atomic layer deposition (ALD). However, the deposition of more complex compounds with specific optical and electrical properties is still challenging. In this work, we follow a bottom-up approach to design an ALD super-cycle to grow mixed indium-gallium-zinc oxide (IGZO) films with a controllable composition. For the formation of the individual indium, gallium, and zinc oxides, we found the use of plasma-enhanced ALD (PEALD) at 150 °C to be favorable when using the organometallic precursors trimethylindium, trimethylgallium, and diethylzinc together with oxygen plasma. The PEALD approach of IGZO films can particularly overcome a nucleation delay within the ZnO sub-cycle known from thermal ALD, achieving a higher growth per cycle and improving the quality and composition homogeneity of the films as shown by in-situ spectroscopic ellipsometry and ex-situ X-ray photoelectron spectroscopy.}, language = {en} } @misc{MańkowskaMazurDomaradzkietal., author = {Mańkowska, Ewa and Mazur, Michał and Domaradzki, Jarosław and Mazur, Piotr and Kot, Małgorzata and Flege, Jan Ingo}, title = {Hydrogen Gas Sensing Properties of Mixed Copper-Titanium Oxide Thin Films}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {8}, issn = {1424-8220}, doi = {10.3390/s23083822}, abstract = {Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4\%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. In this work, mixed copper-titanium oxide ((CuTi)Ox) thin films with various copper concentrations (0-100 at.\%), deposited by magnetron sputtering and annealed at 473 K, were investigated as a prospective hydrogen gas sensing material. Scanning electron microscopy was applied to determine the morphology of the thin films. Their structure and chemical composition were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The prepared films were nanocrystalline mixtures of metallic copper, cuprous oxide, and titanium anatase in the bulk, whereas at the surface only cupric oxide was found. In comparison to the literature, the (CuTi)Ox thin films already showed a sensor response to hydrogen at a relatively low operating temperature of 473 K without using any extra catalyst. The best sensor response and sensitivity to hydrogen gas were found in the mixed copper-titanium oxides containing similar atomic concentrations of both metals, i.e., 41/59 and 56/44 of Cu/Ti. Most probably, this effect is related to their similar morphology and to the simultaneous presence of Cu and Cu2O crystals in these mixed oxide films. In particular, the studies of surface oxidation state revealed that it was the same for all annealed films and consisted only of CuO. However, in view of their crystalline structure, they consisted of Cu and Cu2O nanocrystals in the thin film volume.}, language = {en} } @misc{KediaRaiPhirkeetal., author = {Kedia, Mayank and Rai, Monika and Phirke, Himanshu and Aranda, Clara A. and Das, Chittaranjan and Chirvony, Vladimir and Boehringer, Stephan and Kot, Małgorzata and Malekshahi Byranvand, Mahdi and Flege, Jan Ingo and Redinger, Alex and Saliba, Michael}, title = {Light Makes Right: Laser Polishing for Surface Modification of Perovskite Solar Cells}, series = {ACS Energy Letters}, volume = {8}, journal = {ACS Energy Letters}, issn = {2380-8195}, doi = {10.1021/acsenergylett.3c00469}, pages = {2603 -- 2610}, abstract = {Interface engineering is a common strategy for passivating surface defects to attain open circuit voltages (Voc) in perovskite solar cells (PSCs). In this work, we introduce the concept of polishing a perovskite thin-film surface using a nanosecond (ns) pulsed ultraviolet laser to reduce surface defects, such as dangling bonds, undesirable phases, and suboptimal stoichiometry. A careful control of laser energy and scanning speed improves the photophysical properties of the surface without compromising the thickness. Using laser polishing, a Voc of 1.21 V is achieved for planar PSCs with a triple cation composition, showing an improved perovskite/hole transport interface by mitigating surface recombination losses. We measure an efficiency boost from 18.0\% to 19.3\% with improved stability of up to 1000 h. The results open the door to a new class of surface modification using lasers for interface passivation in well-controllable, automated, scalable, and solvent-free surface treatments.}, language = {en} } @misc{DasRoyKediaetal., author = {Das, Chittaranjan and Roy, Rajarshi and Kedia, Mayank and Kot, Małgorzata and Zuo, Weiwei and F{\´e}lix, Roberto and Sobol, Tomasz and Flege, Jan Ingo and Saliba, Michael}, title = {Unraveling the Role of Perovskite in Buried Interface Passivation}, series = {ACS Applied Materials \& Interfaces}, volume = {15}, journal = {ACS Applied Materials \& Interfaces}, number = {48}, issn = {1944-8244}, doi = {10.1021/acsami.3c13085}, pages = {56500 -- 56510}, abstract = {Interfaces in perovskite solar cells play a crucial role in their overall performance, and therefore, detailed fundamental studies are needed for a better understanding. In the case of the classical n-i-p architecture, TiO2 is one of the most used electron-selective layers and can induce chemical reactions that influence the performance of the overall device stack. The interfacial properties at the TiO2/perovskite interface are often neglected, owing to the difficulty in accessing this interface. Here, we use X-rays of variable energies to study the interface of (compact and mesoporous) TiO2/perovskite in such a n-i-p architecture. The X-ray photoelectron spectroscopy and X-ray absorption spectroscopy methods show that the defect states present in the TiO2 layer are passivated by a chemical interaction of the perovskite precursor solution during the formation of the perovskite layer and form an organic layer at the interface. Such passivation of intrinsic defects in TiO2 removes charge recombination centers and shifts the bands upward. Therefore, interface defect passivation by oxidation of Ti3+ states, the organic cation layer, and an upward band bending at the TiO2/perovskite interface explain the origin of an improved electron extraction and hole-blocking nature of TiO2 in the n-i-p perovskite solar cells.}, language = {en} } @misc{KotKediaPlateetal., author = {Kot, Małgorzata and Kedia, Mayank and Plate, Paul and Marth, Ludwig and Henkel, Karsten and Flege, Jan Ingo}, title = {Application of plasma enhanced atomic layer deposition process of alumina on perovskite film boosts efficiency of solar cells}, series = {Verhandlungen der DPG}, journal = {Verhandlungen der DPG}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, abstract = {It is assumed that plasma-enhanced atomic layer deposition (PEALD) cannot be used to prepare thin films on sensitive organic-inorganic perovskites because the plasma destroys the perovskite film and thus deteriorates its photophysical properties. Here, we prove that using an appropriate geometry of the ALD system (SENTECH SI PEALD system) and suitable process parameters it is possible to coat perovskites with alumina by PEALD. Spectromicroscopy followed by electrical characterisation reveal that as long as the PEALD process is not optimized (too long plasma pulses) one gets degradation of the perovskite as well as dissociation of the created iodine pentoxide (during PEALD) under light that causes a valence band maximum (VBM) shift to the Fermi level and thus significantly decreases the solar cell efficiency. However, once the PEALD process parameters are optimized, no VBM shift is observed. Moreover, the solar cell efficiency depends inversely on process temperature and layer thickness.}, language = {en} } @misc{MazurKapuścikWeichbrodtetal., author = {Mazur, Michał and Kapuścik, Paulina and Weichbrodt, Wiktoria and Domaradzki, Jarosław and Mazur, Piotr and Kot, Małgorzata and Flege, Jan Ingo}, title = {WO3 Thin-Film Optical Gas Sensors Based on Gasochromic Effect towards Low Hydrogen Concentrations}, series = {Materials}, volume = {16}, journal = {Materials}, number = {10}, issn = {1996-1944}, doi = {10.3390/ma16103831}, pages = {17}, abstract = {Hydrogen gas sensors have recently attracted increased interest due to the explosive nature of H2 and its strategic importance in the sustainable global energy system. In this paper, the tungsten oxide thin films deposited by innovative gas impulse magnetron sputtering have been investigated in terms of their response to H2. It was found that the most favourable annealing temperature in terms of sensor response value, as well as response and recovery times, was achieved at 673 K. This annealing process caused a change in the WO3 cross-section morphology from a featureless and homogenous form to a rather columnar one, but still maintaining the same surface homogeneity. In addition to that, the full-phase transition from an amorphous to nanocrystalline form occurred with a crystallite size of 23 nm. It was found that the sensor response to only 25 ppm of H2 was equal to 6.3, which is one of the best results presented in the literature so far of WO3 optical gas sensors based on a gasochromic effect. Moreover, the results of the gasochromic effect were correlated with the changes in the extinction coefficient and the concentration of the free charge carriers, which is also a novel approach to the understanding of the gasochromic phenomenon.}, language = {en} } @inproceedings{HenkelKotSchmeisser, author = {Henkel, Karsten and Kot, Małgorzata and Schmeißer, Dieter}, title = {Localized defect states and charge trapping in Al₂O₃ films prepared by atomic layer deposition}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 205}, abstract = {The evaluation of the electronic structure and intrinsic defect mechanisms in Al₂O₃ thin films is essential for their effective use in applications with desired functionality such as surface passivation schemes for solar cells [1]. We present a comparative study of different Al₂O₃ films grown by atomic layer deposition (ALD) [2]. The layers were deposited on different substrates using the same aluminum precursor (TMA, trimethylalumium) and employing different process parameters (thermal-ALD, plasma-enhanced-ALD, substrate temperature). These films were characterized by resonant photoelectron spectroscopy and by electrical measurements (capacitance-voltage). For all films investigated intrinsic defect states within the electronic band gap were observed including excitonic, polaronic, and charge-transfer defect states, where their relative abundance is subject of the choice of ALD parameters and of the used substrate. The spectroscopic assigned in-gap defect states are related with electronic charges as determined in the electrical measurements. [1] G. Dingemans and W.M.M. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012). [2] K. Henkel, M. Kot, D. Schmeißer, J. Vac. Sci. Technol. A 35, (2017), accepted.}, language = {en} } @inproceedings{KotWojciechowskiSnaithetal., author = {Kot, Małgorzata and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Characterization of the perovskite solar cells containing atomic layer deposited Al2O3 buffer layer}, series = {Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.}, booktitle = {Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {0420-0195}, pages = {S. 147}, abstract = {Hybrid perovskites have potential to overcome performance limits of the current solar cell technologies and achieve low cost and high versatility. Nonetheless, they are prone to degradation in presence of moisture within a couple of hours or days. In this work, we use the atomic layer deposition (ALD) of Al2O3 on the CH3NH3PbI3 perovskite at room temperature in order to verify if this thin ALD layer may protect the perovskite film against moisture degradation and to check the impact of the Al2O3 on the solar to power conversion efficiency (PCE). Depth profiling X-ray photoelectron spectroscopy study shows that the ALD precursors are chemically active only at the perovskite surface and the film bulk is not affected. The perovskite film coated with Al2O3 layer has enhanced moisture stability. Solar cells with a fresh-made CH3NH3PbI3 perovskite film have shown PCE of 15.4\%, while the one with 50 days aged perovskite only 6.1\%. However, when the aged perovskite is covered with RT-ALD-Al2O3 the PCE value is clearly enhanced.[1] [1] M. Kot et al., Room temperature ALD impact on efficiency, stability and surface properties in perovskite solar cells, ChemSusChem,acctepted.}, language = {en} } @misc{DasZiaMortanetal., author = {Das, Chittaranjan and Zia, Waqas and Mortan, Claudiu and Hussain, Navid and Saliba, Michael and Flege, Jan Ingo and Kot, Małgorzata}, title = {Top-Down Approach to Study Chemical and Electronic Properties of Perovskite Solar Cells: Sputtered Depth Profiling Versus Tapered Cross-Sectional Photoelectron Spectroscopies}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {10}, issn = {2367-198X}, doi = {10.1002/solr.202100298}, abstract = {A study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth-profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross-sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP-PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS-PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP-PES dissociates the chemical bonding in the spiro-MeOTAD and perovskite layer and reduces the TiO2, which causes the chemical analysis to be unreliable. The TCS-PES revealed a band bending only at the spiro-MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP-PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2 interface.}, language = {en} } @misc{LaroussiKotFlegeetal., author = {Laroussi, Arwa and Kot, Małgorzata and Flege, Jan Ingo and Raouafi, Noureddine and Mirsky, Vladimir M.}, title = {Self-assembled monolayers from symmetrical di-thiols: Preparation, characterization and application for the assembly of electrochemically active films}, series = {Applied Surface Science}, volume = {513}, journal = {Applied Surface Science}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2020.145827}, abstract = {1,3-dimercaptopropan-2-ol, a symmetrical di-thiol, has been synthesized and applied as a new type of anchor molecule to prepare a self-assembled monolayer (SAM) on the gold surface. The formed monolayers were studied by cyclic voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, kinetic capacitance, and contact angle measurements. The SAM structure depends on the adsorption conditions. A short incubation time of the electrode at high concentration of this di-thiol leads to the predominating binding through one thiol group of the adsorbate to the gold surface, while a long incubation at low concentration leads to the predominating binding by both thiol groups. A comparative study of the desorption and replacement of SAMs indicates a strong stability increase when the SAM molecules bond gold surface by two bonds mainly. This monolayer was used to immobilize electrochemically active p-benzoquinone moiety. The surface concentration of p-benzoquinone obtained from cyclic voltammetry is 2.5 ± 0.2 × 10-10 mol·cm-2 which corresponds to the functionalization of 65 ± 5\% of SAM molecules. The obtained highly stable SAM with redox-active terminal group can be applied for different tasks of chemical sensing and biosensing. As an example, an application of this system for electrocatalytical oxidation of dihydronicotinamide adenosine dinucleotide (NADH) was tested.}, language = {en} } @misc{KotVorokhtaWangetal., author = {Kot, Małgorzata and Vorokhta, Mykhailo and Wang, Zhiping and Snaith, Henry J. and Schmeißer, Dieter and Flege, Jan Ingo}, title = {Thermal stability of CH3NH3PbIxCl3-x versus [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films by X-ray photoelectron spectroscopy}, series = {Applied Surface Science}, volume = {513}, journal = {Applied Surface Science}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2020.145596}, pages = {7}, abstract = {The thermal stability of CH3NH3PbIxCl3-x and [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 perovskite films was studied in-situ by X-ray photoelectron spectroscopy. It was found that below 85 °C both of them are relatively stable. After annealing above 85 °C, we observe a clear perovskite surface decomposition, i.e., a release of organic cations and creation of "metallic lead". The mixed cation lead mixed halide perovskite, however, decomposes at a much lower rate. For both perovskite films, the metallic to the total lead ratio changes with the same rate for the same annealing temperatures. The release of A-site cations from the ABX3 crystal structure of perovskite and/or creation of "metallic lead" causes also a small shift of the valence band maximum towards the Fermi level. The release of [HC(NH2)2]± or Cs± is not as significant as the release of CH3NH3±; therefore, it may explain why [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 solar cells are thermally more stable. Therefore, as the stability of CH3NH3PbIxCl3-x is same as the stability of [HC(NH2)2]0.83Cs0.17PbI2.7Br0.3 below 85 °C, there must be more severe degradation pathways that are currently underappreciated on the solar cell level.}, language = {en} } @misc{KotHenkelNaumannetal., author = {Kot, Małgorzata and Henkel, Karsten and Naumann, Franziska and Gargouri, Hassan and Tarnawska, Lidia Lupina and Wilker, Viola and Kus, Peter and Pożarowska, Emilia and Garain, Samiran and Rouissi, Zied and Schmeißer, Dieter}, title = {Comparison of plasma-enhanced atomic layer deposition AlN films prepared with different plasma sources}, series = {Journal of Vacuum Science and Technology A}, volume = {37}, journal = {Journal of Vacuum Science and Technology A}, number = {2}, issn = {0734-2101}, doi = {10.1116/1.5079628}, pages = {11}, abstract = {A comparative study of thin aluminum nitride (AlN) films deposited by plasma-enhanced atomic layer deposition in the SENTECH SI ALD LL system applying either a direct inductively coupled plasma (ICP) or an indirect capacitively coupled plasma (CCP) source is presented. The films prepared with the ICP source (based on a planar triple spiral antenna) exhibit improved properties concerning the growth rate per cycle, total cycle duration, homogeneity, refractive index, fixed and mobile electrical charges, and residual oxygen content compared to the CCP source, where the comparison is based on the applied plasma power of 200 W. The increase of the plasma power to 600 W in the ICP process significantly reduces the residual oxygen content and enhances the electrical breakdown field. The AlN layers grown under these conditions, with a growth rate per cycle of 1.54 {\AA}/cycle, contain residual oxygen and carbon concentrations of about 10\% and 4\%, respectively, and possess a refractive index of 2.07 (at 632.8 nm).}, language = {en} } @misc{KotwicaDomaradzkiWojcieszaketal., author = {Kotwica, Tomasz and Domaradzki, Jarosław and Wojcieszak, Damian and Sikora, Andrzej and Kot, Małgorzata and Schmeißer, Dieter}, title = {Analysis of surface properties of Ti-Cu-Ox gradient thin films using AFM and XPS investigations}, series = {Materials Science-Poland}, volume = {36}, journal = {Materials Science-Poland}, number = {4}, issn = {0137-1339}, doi = {10.2478/msp-2018-0100}, pages = {761 -- 768}, abstract = {The paper presents results of investigations on surface properties of transparent semiconducting thin films based on (Ti-Cu)oxide system prepared using multi-magnetron sputtering system. The thin films were prepared using two programmed profiles of pulse widt hmodulation coefficient, so called V- and U-shape profiles. The applied powering profiles allowed fabrication of thin films with gradient distribution of Ti and Cu elements over the thickness of deposited layers. Optical investigations allowed determination of transparency of prepared films that reached up to 60 \% in the visible part of optical radiation, which makes them attractive for the transparent electronics domain. Surface properties investigations showed that the surface of mixed (Ti-Cu)oxides was sensitive to adsorption, in particular to carbon dioxide and water vapor. Soft etching with argon ions resulted in surface cleaning from residuals, however, deoxidation of Cu-oxide components was also observed.}, language = {en} } @misc{ObstarczykKaczmarekWojcieszaketal., author = {Obstarczyk, Agata and Kaczmarek, Danuta and Wojcieszak, Damian and Mazur, Michał and Domaradzki, Jarosław and Kotwica, Tomasz and Pastuszek, Roman and Schmeißer, Dieter and Mazur, Piotr and Kot, Małgorzata}, title = {Tailoring optical and electrical properties of thin-film coatings based on mixed Hf and Ti oxides for optoelectronic application}, series = {Materials and Design}, volume = {175}, journal = {Materials and Design}, issn = {0264-1275}, doi = {10.1016/j.matdes.2019.107822}, pages = {15}, abstract = {In this work multi-magnetron sputtering stand was used for the deposition of the mixed oxides thin films based on HfO2 and TiO2. In order to obtain various material composition the power released to each magnetron (containing metallic hafnium and titanium targets) was precisely selected. Structural, surface, optical, electrical and mechanical properties of as-deposited coatings were analyzed. Depending on the hafnium content in the deposited thin films various types of the microstructure was obtained, i.e. HfO2-monoclinic, amorphous and TiO2-rutile. Increase of Ti content above 28 at. \% in the as-prepared mixed oxides coatings caused their amorphization. It was found that with an increase of Ti content in prepared coatings their surface roughness and simultaneously water contact angle decreased. Performed measurements of electrical properties revealed that the lowest leakage current density in the range of 10-7 - 10-8 A/cm2 was obtained for amorphous coatings. Moreover, the tailoring of the dielectric constant was possible by a proper selection of material composition and microstructure of the deposited thin films. Average transparency in the visible wavelength region was in the range of ca. 79-86\%. The influence of material composition and structure on shifting of the fundamental absorption edge and optical bandgap energy was also observed. The refractive index increased with an increase of Ti content, while extinction coefficient was the lowest for amorphous coatings. Additionally, hardness values were dependent on the material composition and optical packing density and were in the range from 7.6 GPa to 10.1 GPa.}, language = {en} } @misc{KotDasBaranetal., author = {Kot, Małgorzata and Das, Chittaranjan and Baran, Derya and Saliba, Michael}, title = {Themed issue on electronic properties and characterisation of perovskites}, series = {Journal of Materials Chemistry C}, volume = {7}, journal = {Journal of Materials Chemistry C}, issn = {2050-7526}, doi = {10.1039/c9tc90085c}, pages = {5224 -- 5225}, language = {en} } @misc{KotHenkelMuelleretal., author = {Kot, Małgorzata and Henkel, Karsten and M{\"u}ller, Klaus and Kegelmann, Lukas and Albrecht, Steve and Tsud, Nataliya and K{\´u}s, Peter and Matolinov{\´a}, Iva and Schmeißer, Dieter}, title = {Al2O3-Atomic Layer Deposited Films on CH3NH3PbI3 : Intrinsic Defects and Passivation Mechanisms}, series = {Energy Technology , The Journal of Physical Chemistry C}, volume = {7}, journal = {Energy Technology , The Journal of Physical Chemistry C}, number = {11}, issn = {2194-4288}, doi = {10.1002/ente.201900975}, pages = {10}, abstract = {The initial interaction of atomic layer deposited films of Al2O3 at room temperature on CH3NH3PbI3 (MAPI) films is studied. Synchrotron radiation-based photoelectron spectroscopy is applied to analyze the initial changes in the Al-derived features by comparing samples with different Al2O3 film thicknesses. It is found that polarons and excitons, both intrinsic defects of Al2O3, play a key role in the interface formation. The polaronic states uptake a charge from the MAPI substrate. This charge is transferred to and stabilized in the excitonic state of Al2O3 which is assigned to predominately tetrahedral coordinated Al sites. This charge transfer is initiated by vacancies present in the MAPI substrate and stabilizes a covalent bonding at the Al2O3-MAPI interface but also causes a roughening of the interface which may lead to the formation of grain boundaries. On top of the rough interface, 2D Al2O3 clusters with an increasing number of octahedrally coordinated Al—O bonds grow, and with increasing Al2O3 coverage, they introduce self-healing of the structural defects.}, language = {en} } @misc{SchmeisserHenkelPożarowskaetal., author = {Schmeißer, Dieter and Henkel, Karsten and Pożarowska, Emilia and Kegelmann, Lukas and Tsud, Nataliya and Kot, Małgorzata}, title = {Point Defect-Mediated Interface Formation and Appearance of a Cooper Minimum for AlOₓ Atomic-Layer-Deposited Films on CH₃NH₃PbI₃}, series = {The Journal of Physical Chemistry. C}, volume = {123}, journal = {The Journal of Physical Chemistry. C}, number = {38}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.9b05282}, pages = {23352 -- 23360}, abstract = {We report on the interaction of CH₃NH₃PbI₃ substrates with AlOx films prepared by atomic layer deposition at room temperature. We use synchrotron radiation-based photoemission spectroscopy and study the Pb 4f, I 3d, and Al 2p core levels as well as the corresponding valence band states (Pb 5d and O 2p). A Cooper minimum is observed for both the Pb 5d and O 2p states, and it indicates that the bonding at the interface must be covalent. We focus on the electronic properties of the substrate and its interface and identify a delicate charge balance between polaronic and excitonic states in MAPI and AlOₓ. The perovskite vacancy sites, identified by changes in the core-level intensities, mediate the charge balance and covalent interaction.}, language = {en} } @misc{KotŁobazaNaumannetal., author = {Kot, Małgorzata and Łobaza, Justyna and Naumann, Franziska and Gargouri, Hassan and Henkel, Karsten and Schmeißer, Dieter}, title = {Long-term ambient surface oxidation of titanium oxynitride films prepared by plasma-enhanced atomic layer deposition: An XPS study}, series = {Journal of Vacuum Science and Technology A}, volume = {36}, journal = {Journal of Vacuum Science and Technology A}, number = {1}, issn = {0734-2101}, doi = {10.1116/1.5003356}, abstract = {The surface oxidation of a titanium oxynitride (TiOxNy) film after long-time storage of 25 month in ambient conditions is investigated. The TiOxNy film is prepared by plasma-enhanced atomic layer deposition using etrakis(dimethylamino)titanium and nitrogen plasma, and the film is characterized by Ar+ ion sputtering of the film surface in combination with x-ray photoelectron spectroscopy (XPS) as well as by angle-resolved XPS. The total thickness of an oxygen-enriched layer at the surface of the TiOxNy films is found to be about 0.7 nm and it consists of a sequence of a 0.4 nm thick TiON/TiO2 enriched layer followed by a 0.3 nm thick TiO2 enriched layer underneath compared to the bulk composition of the film which shows constant values of 29\% TiN, 29\% TiO2, and 42\% TiON. The results suggest that the TiON enrichment takes place initially at the surface followed by a surface and subsurface oxidation.}, language = {en} } @misc{KotWojciechowskiSnaithetal., author = {Kot, Małgorzata and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Evidence of Nitrogen Contribution to the Electronic Structure of the CH₃NH₃PbI₃ Perovskite}, series = {Chemistry - A European Journal}, volume = {24}, journal = {Chemistry - A European Journal}, number = {14}, issn = {0947-6539}, doi = {10.1002/chem.201705144}, pages = {3539 -- 3544}, abstract = {Despite fast development of hybrid perovskite solar cells, there are many fundamental questions related to the perovskite film which remain open. For example, there are contradicting theoretical reports on the role of the or-ganic methylammonium cation (CH₃NH₃+)in the methylam-monium lead triiodide (CH₃NH₃PbI₃)perovskite film. From one side it is reported that the organic cation does not contribute to electronic structure of the CH₃NH₃PbI₃ film. From the other side, valence band maximum fluctuations, dependent on the CH₃NH₃+ rotation, have been theoretically predicted. The resonant X-ray photoelectron spectroscopy results reported here show experimental evidence of nitrogen contribution to the CH₃NH₃PbI₃ electronic structure. Moreover,the observed strong resonances of nitrogen with the I 5s and the Pb 5d-6s levels indicate that the CH₃NH₃PbI₃ valence band is extended up to ~18 eV below the Fermi energy, and therefore one should also consider these shallow core levels while modeling its electronic structure.}, language = {en} } @incollection{HenkelKotRichteretal., author = {Henkel, Karsten and Kot, Małgorzata and Richter, Matthias and Tallarida, Massimo and Schmeißer, Dieter}, title = {An (In Situ)² Approach: ALD and resPES Applied to Al₂O₃, HfO₂, and TiO₂ Ultrathin Films}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 3.1}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 3.1}, editor = {Wandelt, Klaus}, publisher = {Elsevier}, address = {Oxford}, isbn = {978-0-12-809739-7}, doi = {10.1016/B978-0-12-409547-2.13852-1}, pages = {18 -- 26}, abstract = {Oxide surface coatings are of importance in tailoring interface properties with respect to surface passivation, adjustment of surface potentials, or providing active centers for surface reactions. In this contribution, we report about surface coatings prepared by the atomic layer deposition (ALD) method. ALD is known for its conformal growth of ultrathin, dense films which exhibit a low concentration of pinholes.}, language = {en} } @misc{KotKegelmannDasetal., author = {Kot, Małgorzata and Kegelmann, Lukas and Das, Chittaranjan and Kus, Peter and Tsud, Nataliya and Matol{\´i}nov{\´a}, Iva and Albrecht, Steve and Matolin, Vladimir and Schmeißer, Dieter}, title = {Room temperature atomic layer deposited Al₂O₃ improves perovskite solar cells efficiency over time}, series = {ChemSusChem}, volume = {11}, journal = {ChemSusChem}, number = {20}, issn = {1864-5631}, doi = {10.1002/cssc.201801434}, pages = {3640 -- 3648}, abstract = {Electrical characterisation of perovskite solar cells consisting of room-temperature atomic-layer-deposited aluminium oxide (RT-ALD-Al₂O₃) film on top of a methyl ammonium lead triiodide (CH₃NH₃PbI₃) absorber showed excellent stability of the power conversion efficiency (PCE) over along time. Under the same environmental conditions (for 355 d), the average PCE of solar cells without the ALD layer decreased from 13.6 to 9.6 \%, whereas that of solar cells containing 9 ALD cycles of depositing RT-ALD-Al₂O₃on top of CH₃NH₃PbI₃ increased from 9.4 to 10.8 \%. Spectromicroscopic investigations of the ALD/perovskite interface revealed that the maximum PCE with the ALD layer is obtained when the so-called perovskite cleaning process induced by ALD precursors is complete. The PCE enhancement over time is probably related to a self-healing process induced by the RT-ALD-Al₂O₃ film. This work may provide a new direction for further improving the long-term stability and performance of perovskite solar cells.}, language = {en} } @misc{HenkelKotSchmeisser, author = {Henkel, Karsten and Kot, Małgorzata and Schmeißer, Dieter}, title = {Localized defect states and charge trapping in atomic layer deposited-Al₂O₃ films}, series = {Journal of Vacuum Science and Technology, A : Vacuum, Surfaces, and Films}, volume = {35}, journal = {Journal of Vacuum Science and Technology, A : Vacuum, Surfaces, and Films}, number = {1}, issn = {0734-2101}, doi = {10.1116/1.4971991}, pages = {01B125-1 -- 01B125-18}, abstract = {In this study, the authors compared different Al₂O₃ films grown by atomic layer deposition (ALD) with the same aluminum precursor but on different substrates. The authors employed different process parameters such as thermal-ALD and plasma-enhanced-ALD using different substrate temperatures ranging from 280 °C down to room temperature. They characterized these films by resonant photoelectron spectroscopy and by electrical measurements. They established that generally the ALD-Al₂O₃ films show characteristic features of bulk Al₂O₃. For all films investigated, the authors found intrinsic defect states within the electronic band gap and identified excitonic, polaronic, and charge-transfer defect states. The authors gave an atomistic model to explain these intrinsic defects and found that their relative abundance is subject of the choice of ALD parameters and of the substrate used. They were able to relate the spectroscopic assigned in-gap defect states with the electronic charges as determined in our electrical measurements.}, language = {de} } @misc{HenkelDasKotetal., author = {Henkel, Karsten and Das, Chittaranjan and Kot, Małgorzata and Schmeißer, Dieter and Naumann, Franziska and K{\"a}rkk{\"a}nen, Irina and Gargouri, Hassan}, title = {In-gap states in titanium dioxide and oxynitride atomic layer deposited films}, series = {Journal of Vacuum Science and Technology: A}, volume = {35}, journal = {Journal of Vacuum Science and Technology: A}, number = {1}, issn = {0734-2101}, doi = {10.1116/1.4972247}, pages = {01B135-1 -- 01B135-8}, abstract = {Valence band (VB) spectra of titanium dioxide (TiO2) and oxynitride (TiOxNy) films prepared by different atomic layer deposition (ALD) processes are compared and related to electrical characterization [current-voltage (JV) and capacitance-voltage (CV)] results. By increasing the nitrogen amount in the TiO2 film, band-gap narrowing is observed. The band-gap decrease is related to the contribution of the nitrogen density of states, which induces defects within the band-gap and thus reduces its optical band-gap. In-gap states are found in the VB spectra at 1 eV below the Fermi energy in all investigated ALD samples, i.e., in TiO2 as well as in TiOxNy films. An exponential correlation between leakage current density and in-gap state intensity is derived by the combination of JV measurements and VB spectra, whereas the in-gap states seem to have no influence on hysteresis and fixed oxide charges found in the CV data. It is argued that the in-gap states in TiO2 and TiOxNy have an excitonic or polaronic origin. Both, band-gap narrowing and in-gap state intensity can be tuned by the ALD process selection and the variation of its parameters.}, language = {en} } @misc{KotHenkelDasetal., author = {Kot, Małgorzata and Henkel, Karsten and Das, Chittaranjan and Brizzi, Simone and K{\"a}rkk{\"a}nen, Irina and Schneidewind, Jessica and Naumann, Franziska and Gargouri, Hassan and Schmeißer, Dieter}, title = {Analysis of titanium species in titanium oxynitride films prepared by plasma enhanced atomic layer deposition}, series = {Surface and Coatings Technology}, volume = {324}, journal = {Surface and Coatings Technology}, issn = {0257-8972}, doi = {10.1016/j.surfcoat.2016.11.094}, pages = {586 -- 593}, abstract = {A comparative study of thin titanium oxynitride (TiOxNy) films prepared by plasma enhanced atomic layer deposition using tetrakis(dimethylamino)titanium (TDMAT) and N2 plasma as well as titanium(IV)isopropoxide and NH3 plasma is reported. The comparison is based on the combination of Ti2p core level and valence band spectroscopy and current-voltage measurements. The TDMAT/N2 process delivers generally higher fractions of TiN and TiON within the Ti2p spectra of the films and stronger photoemissions within the bandgap as resolved in detail by high energy resolution synchrotron-based spectroscopy. In particular, it is shown that higher TiN contributions and in-gap emission intensities correlate strongly with increased leakage currents within the films and might be modified by the process parameters and precursor selection.}, language = {en} } @misc{DasKotRouissietal., author = {Das, Chittaranjan and Kot, Małgorzata and Rouissi, Zied and Kędzierski, Kamil and Henkel, Karsten and Schmeißer, Dieter}, title = {Selective Deposition of an ultrathin Pt Layer on a Au-Nanoisland-Modified Si Photocathode for Hydrogen Generation}, series = {ACS Omega}, volume = {2}, journal = {ACS Omega}, number = {4}, issn = {2470-1343}, doi = {10.1021/acsomega.6b00374}, pages = {1360 -- 1366}, abstract = {Platinum, being the most efficient and stable catalyst, is used in photoelectrochemical (PEC) devices. However, a minimal amount of Pt with maximum catalytic activity is required to be used to minimize the cost of production. In this work, we use an environmentally friendly, ost-effective, and less Pt-consuming method to prepare PEC devices for the hydrogen evolution reaction (HER). The Pt monolayer catalyst is selectively deposited on a Au-nanoisland-supported boron-doped p-type Si (100) photocathode. The PEC device based on the Si photocathode with an ultralow loading of the Pt catalyst exhibits a comparable performance for the HER to that of devices with a thick Pt layer. In addition, we demonstrate that by using a thin TiO2 layer deposited by atomic layer deposition photo-oxidation of the Si photocathode can be blocked resulting in a stable PEC performance.}, language = {en} } @misc{KotDasHenkeletal., author = {Kot, Małgorzata and Das, Chittaranjan and Henkel, Karsten and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Room temperature atomic layer deposited Al₂O₃ on CH₃NH₃PbI₃ characterized by synchrotron-based X-ray photoelectron spectroscopy}, series = {Nuclear Instruments and Methods in Physics Research B}, volume = {411}, journal = {Nuclear Instruments and Methods in Physics Research B}, issn = {0168-583X}, doi = {10.1016/j.nimb.2017.01.082}, pages = {49 -- 52}, abstract = {An ultrathin Al₂O₃ film deposited on methylammonium lead triiodide (CH₃NH₃PbI₃) perovskite has the capability to suppress the carrier recombination process and improve the perovskite solar cells efficiency and stability. However, annealing at temperatures higher than 85°C degrades the CH₃NH₃PbI₃ perovskite film. The X-ray photoelectron spectroscopy study performed in this work indicates that it is possible to grow Al₂O₃ by atomic layer deposition on the perovskite at room temperature, however, besides pure Al₂O₃ some OH groups are found and the creation of lead and iodine oxides at the Al₂O₃/CH₃NH₃PbI₃ interface takes place.}, language = {en} } @misc{DasKotHenkeletal., author = {Das, Chittaranjan and Kot, Małgorzata and Henkel, Karsten and Schmeißer, Dieter}, title = {Engineering of Sub-Nanometer SiOₓ Thickness in Si Photocathodes for Optimized Open Circuit Potential}, series = {ChemSusChem}, volume = {9}, journal = {ChemSusChem}, number = {17}, issn = {1864-5631}, doi = {10.1002/cssc.201600777}, pages = {2332 -- 2336}, abstract = {Silicon is one of the most promising materials to be used for tandem-cell water-splitting devices. However, the electrochemical instability of bare Si makes it difficult to be used for stable devices. Besides that, the photovoltage loss in Si, caused by several factors (e.g., metal oxide protection layer and/or SiO₂/Si or catalyst/Si interface), limits its use in these devices. In this work, we present that an optimized open circuit potential (OCP) of Si can be obtained by controlling the SiOₓ thickness in sub-nanometer range. It can be done by means of a simple and cost-effective way using the combination of a wet chemical etching and the low temperature atomic layer deposition (ALD) of TiO₂. We have found that a certain thickness of the native SiOₓ is necessary to prevent further oxidation of the Si photocathode during the ALD growth of TiO₂. Moreover, covering the Si photocathode with an ALD TiO₂ layer enhances its stability.}, language = {en} } @misc{KotDasWangetal., author = {Kot, Małgorzata and Das, Chittaranjan and Wang, Zhiping and Henkel, Karsten and Rouissi, Zied and Wojciechowski, Konrad and Snaith, Henry J. and Schmeißer, Dieter}, title = {Room-Temperature Atomic Layer Deposition of Al₂O₃: Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells}, series = {ChemSusChem}, volume = {9}, journal = {ChemSusChem}, number = {24}, issn = {1864-5631}, doi = {10.1002/cssc.201601186}, pages = {3401 -- 3406}, abstract = {In this work, solar cells with a freshly made CH₃NH₃PbI₃ perovskite film showed a power conversion efficiency (PCE) of 15.4 \% whereas the one with 50 days aged perovskite film only 6.1 \%. However, when the aged perovskite was covered with a layer of Al₂O₃ deposited by atomic layer deposition (ALD) at room temperature (RT), the PCE value was clearly enhanced. X-ray photoelectron spectroscopy study showed that the ALD precursors are chemically active only at the perovskite surface and passivate it. Moreover, the RT-ALD-Al2O3-covered perovskite films showed enhanced ambient air stability.}, language = {en} } @misc{ZuoMalekshahiByranvandKodalleetal., author = {Zuo, Weiwei and Malekshahi Byranvand, Mahdi and Kodalle, Tim and Zohdi, Mohammadreza and Lim, Jaekeun and Carlsen, Brian and Friedlmeier, Theresa Magorian and Kot, Małgorzata and Das, Chittaranjan and Flege, Jan Ingo and Zong, Wansheng and Abate, Antonio and Sutter-Fella, Carolin M. and Li, Meng and Saliba, Michael}, title = {Coordination Chemistry as a Universal Strategy for a Controlled Perovskite Crystallization}, series = {Advanced Materials}, volume = {35}, journal = {Advanced Materials}, number = {39}, issn = {0935-9648}, doi = {10.1002/adma.202302889}, abstract = {The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6\% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5\% compared to 20.9\% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.}, language = {en} } @misc{ZiaMalekshahiByranvandRudolphetal., author = {Zia, Waqas and Malekshahi Byranvand, Mahdi and Rudolph, Toby and Rai, Monika and Kot, Małgorzata and Das, Chittaranjan and Kedia, Mayank and Zohdi, Mohammadreza and Zuo, Weiwei and Yeddu, Vishal and Saidaminov, Makhsud I. and Flege, Jan Ingo and Kirchartz, Thomas and Saliba, Michael}, title = {MAPbCl3 Light Absorber for Highest Voltage Perovskite Solar Cells}, series = {ACS Energy Letters}, volume = {9}, journal = {ACS Energy Letters}, issn = {2380-8195}, doi = {10.1021/acsenergylett.3c02777}, pages = {1017 -- 1024}, abstract = {Perovskite solar cells (PSCs) excel in achieving high open-circuit voltages (VOC) for narrow bandgaps (∼1.6 eV) but face challenges with wide-bandgap perovskites, like methylammonium lead trichloride (MAPbCl3) with a 3.03 eV bandgap. These materials are transparent in visible absorbing ultraviolet (UV) light. However, achieving uniform film crystallization remains a hurdle. Here, we enhance MAPbCl3 crystallization by manipulating annealing atmospheres (nitrogen, air, and MACl vapor). Excess MACl vapor improves surface coverage, which is crucial for film stability. We demonstrate that the microstructure of the perovskite film, including surface morphology, grain boundaries, and interfaces, can affect the photovoltaic properties. The subsequently obtained VOC of 1.78 V is the highest recorded for single-junction PSCs to the best of our knowledge. Surprisingly, the conventional hole-transport layer spiro-OMeTAD, optimized for narrow bandgaps, sustains such high voltages. Photoluminescence measurements reveal a trap-assisted recombination peak at 1.65 eV, indicating deep traps as significant to voltage loss in MAPbCl3.}, language = {en} } @misc{GawlińskaNęcekKotStarowiczetal., author = {Gawlińska-Nęcek, Katarzyna and Kot, Małgorzata and Starowicz, Zbigniew and Jarzębska, Anna and Panek, Piotr and Flege, Jan Ingo}, title = {Instability of Formamidinium Lead Iodide (FAPI) Deposited on a Copper Oxide Hole Transporting Layer (HTL)}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {21}, publisher = {American Chemical Society (ACS)}, issn = {1944-8244}, doi = {10.1021/acsami.4c03440}, pages = {27936 -- 27943}, abstract = {Copper oxide appears to be a promising candidate for a hole transport layer (HTL) in emerging perovskite solar cells. Reasons for this are its good optical and electrical properties, cost-effectiveness, and high stability. However, is this really the case? In this study, we demonstrate that copper oxide, synthesized by a spray-coating method, is unstable in contact with formamidinium lead triiodide (FAPI) perovskite, leading to its decomposition. Using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) spectrophotometry, we find that the entire copper oxide diffuses into and reacts with the FAPI film completely. The reaction products are an inactive yellow δ-FAPI phase, copper iodide (CuI), and an additional new phase of copper formate hydroxide (CH2CuO3) that has not been reported previously in the literature.}, language = {en} } @misc{MahmoodinezhadMoralesNaumannetal., author = {Mahmoodinezhad, Ali and Morales, Carlos and Naumann, Franziska and Plate, Paul and Meyer, Robert and Janowitz, Christoph and Henkel, Karsten and Kot, Małgorzata and Z{\"o}llner, Marvin Hartwig and Wenger, Christian and Flege, Jan Ingo}, title = {Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma}, series = {Journal of Vacuum Science and Technology A}, volume = {39}, journal = {Journal of Vacuum Science and Technology A}, number = {6}, issn = {0734-2101}, doi = {10.1116/6.0001375}, abstract = {Indium oxide (InxOy) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium and oxygen plasma in a low-temperature range of 80-200 °C. The optical properties, chemical composition, crystallographic structure, and electrical characteristics of these layers were investigated by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), as well as current-voltage and capacitance-voltage measurements. The SE results yielded a nearly constant growth rate of 0.56 {\AA} per cycle and a thickness inhomogeneity of ≤1.2\% across 4-in. substrates in the temperature range of 100-150 °C. The refractive index (at 632.8 nm) was found to be 2.07 for the films deposited at 150 °C. The PEALD-InxOy layers exhibit a direct (3.3 ± 0.2 eV) and an indirect (2.8 ± 0.1 eV) bandgap with an uptrend for both with increasing substrate temperature. Based on XPS characterization, all InxOy samples are free of carbon impurities and show a temperature-dependent off-stoichiometry indicating oxygen vacancies. XRD diffraction patterns demonstrate an onset of crystallization at 150 °C. Consistent with the optical, XPS, and XRD data, the films deposited at ≥150 °C possess higher electrical conductivity. Our findings prove that a low-temperature PEALD process of InxOy is feasible and promising for a high-quality thin-film deposition without chemical impurities on thermally fragile substrates.}, language = {en} } @misc{JanowitzMahmoodinezhadKotetal., author = {Janowitz, Christoph and Mahmoodinezhad, Ali and Kot, Małgorzata and Morales, Carlos and Naumann, Franziska and Plate, Paul and Z{\"o}llner, Marvin Hartwig and B{\"a}rwolf, Florian and Stolarek, David and Wenger, Christian and Henkel, Karsten and Flege, Jan Ingo}, title = {Toward controlling the Al2O3/ZnO interface properties by in situ ALD preparation}, series = {Dalton Transactions}, volume = {51}, journal = {Dalton Transactions}, issn = {1477-9234}, doi = {10.1039/D1DT04008A}, pages = {9291 -- 9301}, abstract = {An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters.}, language = {en} } @misc{LaroussiKotFlegeetal., author = {Laroussi, Arwa and Kot, Małgorzata and Flege, Jan Ingo and Raouafi, Noureddine and Mirsky, Vladimir M.}, title = {Self-Assembled Monolayers from Symmetrical Di-Thiols: Preparation, Characterization and Application for the Assembly of Electrochemically Active Films}, series = {Engineering Proceedings}, volume = {6}, journal = {Engineering Proceedings}, number = {1}, issn = {2673-4591}, doi = {10.3390/I3S2021Dresden-10112}, abstract = {1,3-dimercaptopropan-2-ol, a symmetrical di-thiol, has been synthesized and applied as a new type of anchor molecule to prepare a self-assembled monolayer (SAM) on a gold surface. The formed monolayers were studied by cyclic voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, kinetic capacitance, and contact angle measurements. The SAM structure depends on the adsorption conditions. A short incubation time of the electrode at high concentration of this di-thiol leads to the predominating binding through one thiol group of the adsorbate to the gold surface, while a long incubation at low concentration leads to the predominating binding by both thiol groups. A comparative study of the desorption and replacement of SAMs indicates a strong stability increase when the SAM molecules bond gold surfaces by two bonds mainly. This monolayer was used to immobilize electrochemically active p-benzoquinone moiety. The surface concentration of p-benzoquinone obtained from cyclic voltammetry is 2.5 ± 0.2 × 10-10 mol cm-2, which corresponds to the functionalization of 65 ± 5\% of SAM molecules. The obtained highly stable SAM with redox-active terminal group can be applied for different tasks of chemical sensing and biosensing. As an example, an application of this system for electrocatalytical oxidation of dihydronicotinamide adenosine dinucleotide (NADH) was tested.}, language = {en} }