@misc{MuellerSchwarzSchmidtetal., author = {M{\"u}ller, Carola J. and Schwarz, Ulrich and Schmidt, Peer and Schnelle, Walter and Doert, Thomas}, title = {High-Pressure Synthesis, Crystal Structure, and Properties of GdS2 with Thermodynamic Investigations in the Phase Diagram Gd-S,}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {636}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {6}, issn = {1521-3749}, doi = {10.1002/zaac.201000015}, pages = {947 -- 953}, abstract = {Gadolinium disulfide was prepared by high-pressure synthesis at 8 GPa and 1173 K. It crystallizes in the monoclinic space group P121/a1 (No. 14) with lattice parameters a = 7.879(1) {\AA}; b = 3.936(1) {\AA}, c = 7.926(1) {\AA} and β = 90.08(1)°. The crystal structure is a twofold superstructure of the aristotype ZrSSi and consists of puckered cationic [GdS]+ double slabs that are sandwiched by planar sulfur sheets containing S22- dumbbells. The thermal decomposition of GdS2 proceeds via the sulfur-deficient polysulfides GdS1.9, GdS1.85 and GdS1.77 and eventually results in the sesquisulfide Gd2S3. GdS2 is a paramagnetic semiconductor which orders antiferromagnetically at TN = 7.7(1) K. A metamagnetic transition is observed in the magnetically ordered state.}, language = {en} } @misc{MuellerGoryachkoBurkovetal., author = {M{\"u}ller, K. and Goryachko, Andriy and Burkov, Yevgen and Schwiertz, Carola and Ratzke, Markus and K{\"o}ble, J. and Reif, J{\"u}rgen and Schmeißer, Dieter}, title = {Scanning Kelvin probe and photoemission electron microscopy of organic source-drain structures}, series = {Synthetic Metals}, volume = {146}, journal = {Synthetic Metals}, number = {3}, pages = {377 -- 382}, language = {en} } @misc{MuellerGoryachkoBurkovetal., author = {M{\"u}ller, Klaus and Goryachko, Andriy and Burkov, Yevgen and Schwiertz, Carola and Ratzke, Markus and K{\"o}ble, J. and Reif, J{\"u}rgen and Schmeißer, Dieter}, title = {Scanning Kelvin Probe Microscopy and Photoemission electron microscopy of organic source-drain structures}, series = {Synthetic Metals}, volume = {146}, journal = {Synthetic Metals}, number = {3}, issn = {0379-6779}, pages = {377 -- 382}, abstract = {n order to optimize organic field effect transistors (OFETs), the characterisation of active-layer surfaces in terms of their roughness, chemical composition and distribution of surface potentials is important. We report on high-resolution microscopic mapping of organic source-drain structures with P3HT as the semiconductor by scanning Kelvin probe microscopy (SKPM) and photoemission electron microscopy (PEEM). It was shown that PEEM is able to characterise the surface morphology (roughness), the chemical homogeneity and the composition of organic structures. The two-dimensional mapping of surface potentials by SKPM with applied source-drain voltages is shown to be an important ingredient of OFETs failure mode analysis.}, language = {en} }