@misc{SowinskaBertaudWalczyketal., author = {Sowinska, Małgorzata and Bertaud, Thomas and Walczyk, Damian and Thiess, Sebastian and Schubert, Markus Andreas and Lukosius, Mindaugas and Drube, W. and Walczyk, Christian and Schr{\"o}der, Thomas}, title = {Hard X-ray Photoelectron Spectroscopy study of the electroforming in Ti/HfO2-based resistive switching structures}, series = {Applied Physics Letters}, volume = {100}, journal = {Applied Physics Letters}, number = {23}, issn = {0003-6951}, pages = {233509 -- 233514}, language = {en} } @misc{LukosiusLippertDabrowskietal., author = {Lukosius, Mindaugas and Lippert, Gunther and Dabrowski, Jarek Marek and Kitzmann, Julia and Lisker, Marco and Kulse, Philipp and Kr{\"u}ger, Andreas and Fursenko, Oksana and Costina, Ioan and Trusch, Andreas and Yamamoto, Yuji and Wolff, Andre and Mai, Andreas and Schr{\"o}der, Thomas}, title = {Graphene Synthesis and Processing on Ge Substrates}, series = {ECS transactions}, volume = {75}, journal = {ECS transactions}, number = {8}, issn = {1938-6737}, doi = {10.1149/07508.0533ecst}, pages = {533 -- 540}, language = {en} } @misc{LukosiusDabrowskiLiskeretal., author = {Lukosius, Mindaugas and Dabrowski, Jarek Marek and Lisker, Marco and Kitzmann, Julia and Schulze, Sebastian and Lippert, Gunther and Fursenko, Oksana and Yamamoto, Yuji and Schubert, Markus Andreas and Krause, Hans-Michael and Wolff, Andre and Mai, A. and Schr{\"o}der, Thomas and Lupina, Grzegorz}, title = {Metal-free, CVD Graphene synthesis on 200 mm Ge / Si(001) substrates}, series = {ACS Applied Materials and Interfaces}, volume = {8}, journal = {ACS Applied Materials and Interfaces}, number = {49}, issn = {1944-8244}, doi = {10.1021/acsami.6b11397}, pages = {33786 -- 33793}, language = {en} } @misc{AkhtarDabrowskiLukoseetal., author = {Akhtar, Fatima and Dabrowski, Jaroslaw and Lukose, Rasuole and Wenger, Christian and Lukosius, Mindaugas}, title = {Chemical Vapor Deposition Growth of Graphene on 200 mm Ge (110)/Si Wafers and Ab Initio Analysis of Differences in Growth Mechanisms on Ge (110) and Ge (001)}, series = {ACS Applied Materials \& Interfaces}, volume = {15}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, issn = {1944-8244}, doi = {10.1021/acsami.3c05860}, pages = {36966 -- 36974}, abstract = {For the fabrication of modern graphene devices, uniform growth of high-quality monolayer graphene on wafer scale is important. This work reports on the growth of large-scale graphene on semiconducting 8 inch Ge(110)/Si wafers by chemical vapor deposition and a DFT analysis of the growth process. Good graphene quality is indicated by the small FWHM (32 cm-1) of the Raman 2D band, low intensity ratio of the Raman D and G bands (0.06), and homogeneous SEM images and is confirmed by Hall measurements: high mobility (2700 cm2/Vs) and low sheet resistance (800 Ω/sq). In contrast to Ge(001), Ge(110) does not undergo faceting during the growth. We argue that Ge(001) roughens as a result of vacancy accumulation at pinned steps, easy motion of bonded graphene edges across (107) facets, and low energy cost to expand Ge area by surface vicinals, but on Ge(110), these mechanisms do not work due to different surface geometries and complex reconstruction.}, language = {en} } @misc{CapistaLukoseMajnoonetal., author = {Capista, Daniele and Lukose, Rasuole and Majnoon, Farnaz and Lisker, Marco and Wenger, Christian and Lukosius, Mindaugas}, title = {Study on the metal -graphene contact resistance achieved with one -dimensional contact architecture}, series = {IEEE Nanotechnology Materials and Devices Conference (NMDC 2023), Paestum, Italy, 22-25 October 2023}, journal = {IEEE Nanotechnology Materials and Devices Conference (NMDC 2023), Paestum, Italy, 22-25 October 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-3546-0}, doi = {10.1109/NMDC57951.2023.10343775}, pages = {118 -- 119}, abstract = {Graphene has always been considered as one of the materials with the greatest potential for the realization of improved microelectronic and photonic devices. But to actually reach its full potential in Si CMOS technology, graphene -based devices need to overcome different challenges. They do not only need to have better performances than standard devices, but they also need to be compatible with the production of standard Si based devices. To address the first challenge the main route requires the optimization of the contact resistance, that highly reduces the devices performance, while the second challenges requires the integration of graphene inside the standard production lines used for microelectronic. In this work we used an 8" wafer pilot -line to realize our devices and we studied the behavior of the contact resistance between metal and graphene obtained by one -dimensional contact architecture between the two materials. The contact resistance has been measured by means of Transmission Line Method (TLM) with several contact patterning.}, language = {en} } @misc{LukosiusLukoseLiskeretal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Lisker, Marco and Dubey, P. K. and Raju, A. I. and Capista, Daniele and Majnoon, Farnaz and Mai, A. and Wenger, Christian}, title = {Developments of Graphene devices in 200 mm CMOS pilot line}, series = {Proc. Nanotechnology Materials and Devices Conference (NMDC 2023),Paestum, Italy, 22-25 October 2023}, journal = {Proc. Nanotechnology Materials and Devices Conference (NMDC 2023),Paestum, Italy, 22-25 October 2023}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {979-8-3503-3546-0}, doi = {10.1109/NMDC57951.2023.10343569}, pages = {505 -- 506}, abstract = {Due to the unique electronic band structure, graphene has opened great potential to extend the functionality of a large variety of devices. Despite the significant progress in the fabrication of various graphene based microelectronic devices, the integration of graphene devices still lack the stability and compatibility with Si-technology processes. Therefore, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance. This study aims to explore various aspects of graphene research on a 200mm pilot line, with a focus on simulations and fabrication of graphene modulator. To be more precise, it includes design and fabrication of the layouts, necessary mask sets, creation of the flows, fabrication, and measurements of the Gr modulators on 200 mm wafers.}, language = {en} } @misc{FranckDabrowskiSchubertetal., author = {Franck, Max and Dabrowski, Jaroslaw and Schubert, Markus Andreas and Wenger, Christian and Lukosius, Mindaugas}, title = {Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {19}, issn = {2079-4991}, doi = {10.3390/nano12193260}, abstract = {The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10-7-10-3 mbar and 900-980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2-3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3-10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth}, language = {en} } @misc{LukosiusLukoseLiskeretal., author = {Lukosius, Mindaugas and Lukose, Rasuolė and Lisker, Marco and Luongo, G. and Elviretti, M. and Mai, Andreas and Wenger, Christian}, title = {Graphene Research in 200 mm CMOS Pilot Line}, series = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, journal = {45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022}, isbn = {978-953-233-103-5}, issn = {2623-8764}, doi = {10.23919/MIPRO55190.2022.9803362}, pages = {113 -- 117}, abstract = {Due to the unique electronic structures, graphene and other 2D Materials are considered as materials which can enable and extend the functionalities and performance in a large variety of applications, among them in microelectronics. At this point, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance.Towards these goals, this paper focuses on the full spectra of graphene research aspects in 200mm pilot line. We investigated different process module developments such as CMOS compatible growth of high quality graphene on germanium and its growth mechanisms, transfer related challenges on target substrates, patterning, passivation and various concepts of contacting of graphene on a full 200 mm wafers. Finally, we fabricated proof-of-concept test structures e.g. TLM, Hall bars and capacitor structures to prove the feasibility of graphene processing in the pilot line of IHP.}, language = {en} }