@misc{GruegerWelzWoll, author = {Gr{\"u}ger, Lennart and Welz, Ulrike Franziska and Woll, Ralf}, title = {Vorstellung eines Leitfadens f{\"u}r schriftliche Befragungen}, series = {Nachhaltiges Qualit{\"a}tsdatenmanagement: Bericht zur GQW-Jahrestagung 2022 in Chemnitz}, journal = {Nachhaltiges Qualit{\"a}tsdatenmanagement: Bericht zur GQW-Jahrestagung 2022 in Chemnitz}, editor = {Gr{\"o}ger, Sophie}, publisher = {Springer}, isbn = {978-3-658-40587-8}, doi = {10.1007/978-3-658-40588-5_5}, pages = {78 -- 103}, abstract = {Schriftliche Befragungen gibt es in der heute bekannten Form seit den 1970er Jahren [1]. Inzwischen stellen Befragungen in der empirischen Forschung eine der h{\"a}ufig angewendeten Erhebungsmethoden dar [2]. Eine Vielzahl an Informationen existiert zum Thema Fragebogen und dessen Erstellung sowie zur Durchf{\"u}hrung und Auswertung der Befragung. Immer wieder stellen sich {\"a}hnlichen Fragen, die in einem kleinen Leitfaden beantwortet werden sollen. Die Durchf{\"u}hrung einer schriftlichen Befragung folgt h{\"a}ufig einem sehr {\"a}hnlichen Muster. Es existieren bereits Leitf{\"a}den wie „The Tailored Design Method" nach DILLMAN ET AL [3]. Dieser Leitfaden leistet Hilfestellung bei der Erarbeitung eines Fragebogens und verspricht eine hohe Datenqualit{\"a}t und Aussch{\"o}pfungsquote. Der Leitfaden besitzt jedoch keinen Abschnitt {\"u}ber die Datenauswertung [3]. Auf der letzten GQW - Tagung st{\"u}tzte sich ein großer Teil der Beitr{\"a}ge auf Befragungen. Mithin stellte sich die Aufgabe zur Entwicklung eines Leitfadens f{\"u}r Befragungen. Darin werden typische Problemstellungen wie der repr{\"a}sentative Stichprobenumfang, allgemeine Anforderungen an das Design und m{\"o}gliche Fehler adressiert. Zu diesem Zweck wird zun{\"a}chst die bereits vorhandene Literatur analysiert, zusammengefasst und anschließend ein Leitfaden daraus entwickelt. Ergebnisse einer Befragung sollten statistisch belastbar sein, damit abgesicherte Aussagen aus den Ergebnissen abgeleitet werden k{\"o}nnen. Der erstellte Leitfaden soll in die Lehrt{\"a}tigkeiten eingebaut werden und Studierenden bei der Durchf{\"u}hrung belastbarer Umfragen unterst{\"u}tzen. Auf diese Weise wird zur nachhaltigen F{\"o}rderung des Qualit{\"a}tsmanagements-Nachwuchses beigetragen.}, language = {de} } @techreport{GruegerSydowWolletal., author = {Gr{\"u}ger, Lennart and Sydow, Benjamin and Woll, Ralf and Buhl, Johannes}, title = {Design of a Cost-Effective and Statistically Validated Test Specification with Selected Machine Elements to Evaluate the Influence of the Manufacturing Process with a Focus on Additive Manufacturing}, doi = {https://doi.org/10.3390/met13111900}, pages = {49}, abstract = {Due to their versatile advantages, the use of additively manufactured components is growing. In addition, new additive manufacturing processes are constantly being developed, so that a wide range of printing processes are now available for metal. Despite the same starting material, the microstructure and thus also the final mechanical properties differ greatly compared to conventional processes. In most cases, only direction-dependent characteristic values from the uniaxial tension are used to qualify a printing process before it is used. The literature, on the other hand, demonstrates that the results are not transferable to other loading conditions. In this work, several engineering tests were integrated into a single test specimen so that they can be determined on the same specimen. The test specimen can be used to test tooth root strength, bending strength, notched bar impact energy, and thread strength depending on the mounting direction, thus representing industrial loading cases. In this study, test specimens were fabricated by conventional manufacturing (machining), L-PBF (Laser Powder Bed Fusion), and WA-DED (Wire Arc Direct Energy Deposition), and the results were compared using statistical methods. Factors to capture manufacturing influence and buildup direction were statistically validated on 316L. The work shows a benchmark with a typical initial microstructure of rolled and milled material, L-PBF, and WA-DED parts on loads close to the application and thus simplifies an industry-oriented evaluation of a new manufacturing process.}, language = {en} } @incollection{GruegerFischerWoll, author = {Gr{\"u}ger, Lennart and Fischer, Tim Sebastian and Woll, Ralf}, title = {Investigation of the Wire Arc Direct Energy Deposition-Process and Possible Interactions}, series = {Advances in Manufacturing IV}, volume = {2024}, booktitle = {Advances in Manufacturing IV}, editor = {Gapiński, Bartosz and Ciszak, Olaf Stanisław and Ivanov, Vitalii and Machado, Jose Mendes}, edition = {4}, publisher = {Springer Nature Switzerland}, address = {Cham}, isbn = {9783031564659}, issn = {2195-4356}, doi = {10.1007/978-3-031-56463-5_14}, pages = {176 -- 194}, abstract = {The Wire Arc Direct Energy Deposition (WA-DED) process is highly regarded as part of additive manufacturing. Compared to other additive manufacturing processes, it is characterized above all by its high deposition rate and low system costs. Despite many years of experience in the build-up welding process, WA-DED still holds a number of challenges in terms of process stability. This article analyses the interactions in the WA-DED process. To this end, the process was visualized and described with the help of Structured Analysis and Design Technique (SADT). Building on this, a process Failure Mode and Effects Analysis (FMEA) was presented to identify and priorities risks. Finally, the results of the Taguchi tests were analyzed and visualized. The results illustrate the strong interactions between the influencing factors. These have a material-specific effect on the production results. Each new material composition therefore requires a systematic analysis in order to determine quantitative correlations. In future, these can be supported by machine learning approaches.}, language = {en} } @misc{FischerGruegerWoll, author = {Fischer, Tim Sebastian and Gr{\"u}ger, Lennart and Woll, Ralf}, title = {Additive Manufacturing: A Step-by-Step Guide}, series = {Industry 4.0 Science}, journal = {Industry 4.0 Science}, number = {1}, issn = {2942-6162}, doi = {10.30844/I4SE.23.1.80}, pages = {80 -- 88}, abstract = {New technologies have enabled additive manufacturing to construct components layer by layer using 3D model data. Machinery requirements for this are minimal, entailing only a welding device for energy input and a guiding machine to shape the component. Though there are clear benefits to the process, such as the cost-effective technology and high deposition rates, the complex interactions involved must receive due consideration.}, language = {en} } @misc{GruegerFischerWolletal., author = {Gr{\"u}ger, Lennart and Fischer, Tim Sebastian and Woll, Ralf and Buhl, Johannes}, title = {Safeguarding Against Risks in the Wire Arc Additive Manufacturing Process}, series = {Industry 4.0 Science}, volume = {2024}, journal = {Industry 4.0 Science}, number = {1}, issn = {2942-6170}, doi = {10.30844/I4SE.24.1.63}, pages = {63 -- 69}, abstract = {In this article, the potential risks in wire arc additive manufacturing are analyzed using failure mode and effects analysis. To achieve this, 186 possible causes of risk were analyzed and the five most critical risks were discussed in detail. Four significant risk factors were identified in the construction process. The fifth risk relates to the shielding gas flow. This is only one influencing factor among the welding parameters, which have strong interactions with each other. Therefore, their relationships should be analyzed on the basis of numerous tests.}, language = {en} } @misc{GruegerFischerWolletal., author = {Gr{\"u}ger, Lennart and Fischer, Tim Sebastian and Woll, Ralf and Buhl, Johannes}, title = {Absicherung von Risiken beim Prozess des Wire Arc Additive Manufacturing}, series = {Industry 4.0 Science}, volume = {2024}, journal = {Industry 4.0 Science}, number = {1}, issn = {2942-6154}, doi = {10.30844/I4SD.24.1.63}, pages = {63 -- 69}, language = {de} } @misc{FischerGruegerWoll, author = {Fischer, Tim Sebastian and Gr{\"u}ger, Lennart and Woll, Ralf}, title = {Modellierung von Einfl{\"u}ssen auf das Wire Arc Additive Manufacturing}, series = {Industrie Management 4.0}, journal = {Industrie Management 4.0}, number = {5}, issn = {2364-9208}, doi = {10.30844/IM_23-5_53-57}, pages = {53 -- 57}, abstract = {Das Wire Arc Additive Manufacturing, kurz WAAM, ist ein additives Fertigungsverfahren, welches metallische Bauteile auf Grundlage des Lichtbogenschweißens fertigt. Additive Fertigung ist laut DIN EN ISO/ASTM 52900 ein Prozess, welcher Bauteile aus 3D-Modelldaten schichtweise herstellt. Die grundlegenden Komponenten sind ein Schweißger{\"a}t, welches die ben{\"o}tigte Energie zum Schmelzen des Metalldrahts in den Prozess einbringt sowie eine F{\"u}hrungsmaschine, welche die vorgegebene Geometrie des Bauteils abf{\"a}hrt. Anwendungsbereiche sind Rapid Prototyping und Tooling, Direct Manufacturing und Additive Repair. Die gr{\"o}ßten Vorteile stellen die kosteng{\"u}nstige Anlagentechnik und die hohen Abscheidungsraten dar. Nachteilig am Verfahren sind die mangelnde Prozessstabilit{\"a}t und Wiederholgenauigkeit. Der Beitrag soll dazu dienen, den Fertigungsprozess des WAAM-Verfahrens {\"u}bersichtlich darzustellen, und dabei auf die komplexen Wechselwirkungen eingehen.}, language = {de} }