@misc{MaussNakovWenzeletal., author = {Mauß, Fabian and Nakov, Galin and Wenzel, Paul and Steiner, R{\"u}diger and Kr{\"u}ger, Christian and Zhang, Yongzeh and Rawat, Rajesh and Borg, Andreas and Perlman, Cathleen and Fr{\"o}jd, Karin and Lehtiniemi, Harry}, title = {Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach}, series = {SAE International Journal of Engines}, volume = {2}, journal = {SAE International Journal of Engines}, number = {2}, issn = {1946-3936}, pages = {89 -- 104}, language = {en} } @inproceedings{MaussLehtiniemiZhangetal., author = {Mauß, Fabian and Lehtiniemi, Harry and Zhang, Y. and Rawat, Rajesh}, title = {"Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models"}, language = {en} } @inproceedings{MaussEbenezerLehtiniemi, author = {Mauß, Fabian and Ebenezer, N. and Lehtiniemi, Harry}, title = {Adaptive Polynomial Tabulation (APT): A computationally economical strategy for the HCCI engine simulation of complex fuel}, language = {en} } @inproceedings{LehtiniemiMaussBalthasaretal., author = {Lehtiniemi, Harry and Mauß, Fabian and Balthasar, M. and Magnusson, I.}, title = {Diesel Spray Ignition using a Progress Variable Approach}, series = {Book of abstracts, Fifth Symposium Towards Clean Diesel Engines, 2 - 3 June 2005, Lund, Sweden}, booktitle = {Book of abstracts, Fifth Symposium Towards Clean Diesel Engines, 2 - 3 June 2005, Lund, Sweden}, publisher = {Univ., Lund Institute of Technology}, address = {Lund}, language = {en} } @inproceedings{GoganLehtiniemiMaussetal., author = {Gogan, Adina and Lehtiniemi, Harry and Mauß, Fabian and Sunden, Bengt}, title = {Stochastic Reactor Model for Auto-Ignition Calculation in Spark Ignition Engines}, series = {Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 3 - 6, 2005}, booktitle = {Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 3 - 6, 2005}, address = {Louvain-la-Neuve}, language = {en} } @inproceedings{LehtiniemiBorgMauss, author = {Lehtiniemi, Harry and Borg, Andreas and Mauß, Fabian}, title = {Konditionierte Momenten-Schließung mit einem Fortschritts-Variablen-Ansatz}, series = {Motorische Verbrennung, aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze XI. Tagung im Haus der Technik e.V., Ludwigsburg, 14./15. M{\"a}rz 2013}, booktitle = {Motorische Verbrennung, aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze XI. Tagung im Haus der Technik e.V., Ludwigsburg, 14./15. M{\"a}rz 2013}, editor = {Leipertz, Alfred}, publisher = {ESYTEC Energie- u. Systemtechnik}, address = {Erlangen}, isbn = {978-3-931901-87-5}, pages = {347 -- 358}, language = {de} } @incollection{LehtiniemiBorgMauss, author = {Lehtiniemi, Harry and Borg, Andreas and Mauß, Fabian}, title = {Conditional Moment Closure with a Progress Variable Approach}, series = {Engine processes}, booktitle = {Engine processes}, publisher = {Expert Verlag}, address = {Renningen}, isbn = {978-3-8169-3222-2}, pages = {100 -- 111}, language = {en} } @inproceedings{NetzerSeidelLehtiniemietal., author = {Netzer, Corinna and Seidel, Lars and Lehtiniemi, Harry and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Impact of gasoline surrogates with different fuel sensitivity (RON-MON) on knock prediction}, series = {Proceedings of the 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) ECCM 6 and 7th European Conference on Computational Fluid Dynamics ECFD 7, Glasgow, Scotland, UK June 11 - 15, 2018}, booktitle = {Proceedings of the 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) ECCM 6 and 7th European Conference on Computational Fluid Dynamics ECFD 7, Glasgow, Scotland, UK June 11 - 15, 2018}, pages = {906 -- 917}, language = {en} } @inproceedings{FrankenNetzerPasternaketal., author = {Franken, Tim and Netzer, Corinna and Pasternak, Michal and Mauß, Fabian and Seidel, Lars and Matrisciano, Andrea and Borg, Anders and Lehtiniemi, Harry and Kulzer, Andr{\´e} Casal}, title = {Assessment of Water Injection in a SI Engine using a Fast Running Detailed Chemistry Based Combustion Model}, series = {Symposium of Combustion Control 2018, Aachen}, booktitle = {Symposium of Combustion Control 2018, Aachen}, address = {Aachen}, pages = {10}, language = {en} } @inproceedings{NetzerSeidelLehtiniemietal., author = {Netzer, Corinna and Seidel, Lars and Lehtiniemi, Harry and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Impact of Formulation of Fuel Surrogates on Engine Knock Prediction}, series = {International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, April 9th , 2018, Detroit, USA}, booktitle = {International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, April 9th , 2018, Detroit, USA}, pages = {6}, language = {en} } @misc{FrankenDugganTaoetal., author = {Franken, Tim and Duggan, Alexander and Tao, Feng and Matrisciano, Andrea and Lehtiniemi, Harry and Borg, Anders and Mauß, Fabian}, title = {Multi-Objective Optimization of Fuel Consumption and NOx Emissions of a heavy-duty Diesel engine using a Stochastic Reactor Model}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2019-01-1173}, issn = {0096-5170}, abstract = {Highly fuel-efficient Diesel engines, combined with effective exhaust aftertreatment systems, enable an economic and low-emission operation of heavy-duty vehicles. The challenge of its development arises from the present engine complexity, which is expected to increase even more in the future. The approved method of test bench measurements is stretched to its limits, because of the high demand for large parameter variations. The introduction of a physics-based quasi-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of these Diesel engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during …}, language = {en} } @misc{FrankenNetzerMaussetal., author = {Franken, Tim and Netzer, Corinna and Mauß, Fabian and Pasternak, Michal and Seidel, Lars and Borg, Anders and Lehtiniemi, Harry and Matrisciano, Andrea and Kulzer, Andr{\´e} Casal}, title = {Multi-objective optimization of water injection in spark-ignition engines using the stochastic reactor model with tabulated chemistry}, series = {International Journal of Engine Research}, volume = {20}, journal = {International Journal of Engine Research}, number = {10}, issn = {2041-3149}, doi = {10.1177/1468087419857602}, pages = {1089 -- 1100}, abstract = {Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher engine efficiency. The novel approach of this work is the development of a simulation-based optimization process combining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injection. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The application of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well performing multi-objective optimization and an optimized set of engine operating parameters with water injection and high compression ratio is found.}, language = {en} } @misc{NetzerFrankenLehtiniemietal., author = {Netzer, Corinna and Franken, Tim and Lehtiniemi, Harry and Mauß, Fabian and Seidel, Lars}, title = {Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine using Detailed Chemistry}, series = {SAE technical papers}, journal = {SAE technical papers}, number = {2018-01-0200}, issn = {0148-7191}, doi = {10.4271/2018-01-0200}, pages = {14}, language = {en} } @misc{FrankenDugganFengetal., author = {Franken, Tim and Duggan, Alexander and Feng, Tao and Borg, Anders and Lehtiniemi, Harry and Matrisciano, Andrea and Mauß, Fabian}, title = {Multi-Objective Optimization of Fuel Consumption and NOx Emissions using a Stochastic Reactor Model, THIESEL 2018 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines}, language = {en} } @misc{FrankenNetzerPasternaketal., author = {Franken, Tim and Netzer, Corinna and Pasternak, Michal and Mauß, Fabian and Seidel, Lars and Matrisciano, Andrea and Borg, Anders and Lehtiniemi, Harry and Kulzer, Andr{\´e} Casal}, title = {Simulation of Spark-Ignited Engines with Water Injection using the Stochastic Reactor Model, 37th International Symposium on Combustion}, language = {en} } @misc{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Lehtiniemi, Harry and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory}, series = {International Journal of Engine Research}, volume = {19}, journal = {International Journal of Engine Research}, number = {1}, issn = {1468-0874}, doi = {10.1177/1468087417740271}, pages = {33 -- 44}, abstract = {Engine knock is an important phenomenon that needs consideration in the development of gasoline-fueled engines. In our days, this development is supported using numerical simulation tools to further understand and predict in-cylinder processes. In this work, a model tool chain which uses a detailed chemical reaction scheme is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition characteristics and the emissions are calculated using a gasoline surrogate reaction scheme containing pathways for oxidation of ethanol, toluene, n-heptane, iso-octane and their mixtures. The combustion is predicted using a combination of the G-equation based flame propagation model utilizing tabulated laminar flame speeds and well-stirred reactors in the burned and …}, language = {en} } @misc{WernerNetzerLehtiniemietal., author = {Werner, Adina and Netzer, Corinna and Lehtiniemi, Harry and Borg, Anders and Matrisciano, Andrea and Seidel, Lars and Mauß, Fabian}, title = {A Computationally Efficient Combustion Progress Variable (CPV) Approach for Engine Applications}, doi = {10.13140/RG.2.2.15334.27209}, language = {en} } @misc{WernerMatriscianoNetzeretal., author = {Werner, Adina and Matrisciano, Andrea and Netzer, Corinna and Lehtiniemi, Harry and Borg, Anders and Seidel, Lars and Mauß, Fabian}, title = {Further Application of the Fast Tabulated CPV Approach}, doi = {10.13140/RG.2.2.18689.71529}, language = {en} } @misc{NagyMatriscianoLehtiniemietal., author = {Nagy, Imre Gergely and Matrisciano, Andrea and Lehtiniemi, Harry and Mauß, Fabian and Schmid, Andreas}, title = {Influence of nozzle eccentricity on spray structures in marine diesel sprays}, series = {SAE technical papers}, journal = {SAE technical papers}, number = {2017-24-0031}, issn = {0148-7191}, pages = {13}, abstract = {Abstract: Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup odelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup. Firstly, the derived droplet distributions were …}, language = {en} } @misc{MatriscianoFrankenPerlmanetal., author = {Matrisciano, Andrea and Franken, Tim and Perlman, Cathleen and Borg, Anders and Lehtiniemi, Harry and Mauß, Fabian}, title = {Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model}, series = {SAE technical papers}, journal = {SAE technical papers}, number = {2017-01-0512}, issn = {0148-7191}, doi = {10.4271/2017-01-0512}, pages = {18 Seiten}, language = {en} } @inproceedings{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Mauß, Fabian and Lehtiniemi, Harry and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric}, title = {3D CFD Engine Knock Predication and Evaluation Based on Detailed Chemistry and Detonation Theory}, series = {Motorische Verbrennung : aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze, XIII. Tagung im Haus der Technik Ludwigsburg, 16.-17. M{\"a}rz 2017}, booktitle = {Motorische Verbrennung : aktuelle Probleme und moderne L{\"o}sungsans{\"a}tze, XIII. Tagung im Haus der Technik Ludwigsburg, 16.-17. M{\"a}rz 2017}, editor = {Leipertz, Alfred and Fr{\"o}ba, Andreas Paul}, publisher = {ESYTEC Energie- und Systemtechnik GmbH}, address = {Erlangen}, isbn = {978-3-945806-08-1}, language = {en} } @misc{FrankenSommerhoffWillemsetal., author = {Franken, Tim and Sommerhoff, Arnd and Willems, Werner and Matrisciano, Andrea and Lehtiniemi, Harry and Borg, Anders and Netzer, Corinna and Mauß, Fabian}, title = {Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model}, series = {SAE technical paper}, journal = {SAE technical paper}, issn = {0148-7191}, doi = {10.4271/2017-01-0516}, language = {en} } @inproceedings{NetzerSeidelLehtiniemietal., author = {Netzer, Corinna and Seidel, Lars and Lehtiniemi, Harry and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Efficient tracking of knock onset for a wide range of fuel surrogates}, series = {International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress}, booktitle = {International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress}, pages = {6}, language = {en} } @misc{SvenssonLiShamunetal., author = {Svensson, Erik and Li, Changle and Shamun, Sam and Johansson, Bengt and Tuner, Martin and Perlman, Cathleen and Lehtiniemi, Harry and Mauß, Fabian}, title = {Potential Levels of Soot, NOx , HC and CO for Methanol Combustion}, series = {SAE Technical Papers}, journal = {SAE Technical Papers}, number = {2016-01-0887}, issn = {0148-7191}, doi = {10.4271/2016-01-0887}, pages = {17 Seiten}, abstract = {Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads. The SRM was able to predict the combustion in terms of pressure trace and rate of heat release. The CO and NOx emissions were matched, however, the HC emissions were underestimated. Finally, the trajectories from the SRM simulations were superimposed on the T-Φ maps to investigate the in engine conditions. The T-Φ map analysis shows that emission of soot are non-existent, formaldehyde can be avoided and that emissions of methane are kept at, compared to diesel combustion, low levels, however CO and NOx levels are similar to diesel combustion. These results were confirmed for engine conditions by the SRM simulations and the engine experiments.}, language = {en} } @misc{LehtiniemiBorgMauss, author = {Lehtiniemi, Harry and Borg, Anders and Mauß, Fabian}, title = {Combustion Modeling of Diesel Sprays}, series = {SAE Technical Papers}, journal = {SAE Technical Papers}, number = {2016-01-0592}, issn = {0148-7191}, doi = {10.4271/2016-01-0592}, pages = {1 -- 11}, abstract = {Several models for ignition, combustion and emission formation under diesel engine conditions for multi-dimensional computational fluid dynamics have been proposed in the past. It has been recognized that the use of a reasonably detailed chemistry model improves the combustion and emission prediction especially under low temperature and high exhaust gas recirculation conditions.The coupling of the combustion chemistry and the turbulent flow can be achieved with different assumptions. In this paper we investigate a selection of n-heptane spray experiments published by the Engine Combustion Network (ECN spray H) with three different combustion models: well-stirred reactor model, transient interactive flamelet model and progress variable based conditional moment closure. All models cater for the use of detailed chemistry, while the turbulence-chemistry interaction modeling and the ability to consider local effects differ.The same chemical mechanism is used by all combustion models, which allows a comparison of ignition delay, flame stabilization and flame lift-off length between the experiments and the results from simulations using the different combustion models. The investigated parameters influence the predictions of computational fluid dynamics simulations of diesel engines. This study indicates that the most reasonable behavior with respect to ignition, flame stabilization and flame structure is predicted by the progress variable based conditional moment closure model.}, language = {en} } @inproceedings{MatriscianoBorgPerlmanetal., author = {Matrisciano, Andrea and Borg, Anders and Perlman, Cathleen and Pasternak, Michal and Seidel, Lars and Netzer, Corinna and Mauß, Fabian and Lehtiniemi, Harry}, title = {Simulation of DI-Diesel combustion using tabulated chemistry approach}, series = {1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden}, booktitle = {1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden}, pages = {44 -- 47}, language = {en} } @misc{MatriscianoBorgPerlmanetal., author = {Matrisciano, Andrea and Borg, Anders and Perlman, Cathleen and Lehtiniemi, Harry and Pasternak, Michal and Mauß, Fabian}, title = {Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM}, series = {SAE Technical Papers}, journal = {SAE Technical Papers}, number = {2015-24-2400}, issn = {0148-7191}, doi = {10.4271/2015-24-2400}, pages = {1 -- 15}, abstract = {In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work. The case is a single-injection part-load passenger car Diesel engine with 27 \% EGR fueled with regular Diesel fuel. The two different approaches are analyzed and a detailed comparison is presented for the different soot processes globally and in the mixture fraction space. The contribution of the work presented in this paper is that a method which allows for a direct comparison of soot source terms - calculated online or retrieved from a flamelet table - without any change in the simulation setup has been developed within the SRM framework. It is a unique tool for model development. Our analysis supports our previous conclusion [1] that flamelet soot source terms libraries can be used for multi-dimensional modeling of soot formation in Diesel engines.}, language = {en} } @inproceedings{MatriscianoSeidelKlaueretal., author = {Matrisciano, Andrea and Seidel, Lars and Klauer, Christian and Lehtiniemi, Harry and Mauß, Fabian}, title = {An a priori thermodynamic data analysis based chemical lumping method for the reduction of large and multi-component chemical kinetic mechanisms}, series = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, booktitle = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, pages = {2}, abstract = {A chemical species lumping approach for reduction of large hydrocarbons and oxygenated fuels is presented. The methodology is based on an a priori analysis of the Gibbs free energy of the isomer species which is then used as main criteria for the evaluation of lumped group. Isomers with similar Gibbs free energy are lumped assuming they present equal concentrations when applied to standard reactor conditions. Unlike several lumping approaches found in literature, no calculation results from the primary mechanism have been employed prior to the application of our chemical lumping strategy.}, language = {en} } @inproceedings{MatriscianoSeidelKlaueretal., author = {Matrisciano, Andrea and Seidel, Lars and Klauer, Christian and Mauß, Fabian and Lehtiniemi, Harry}, title = {An a priori thermodynamic data analysis based on chemical lumping method for the reduction of large and multi-component chemical kinetic mechanisms}, series = {5th Annual Internation Workshop on Model Reduction in Reaction Flows (IWMRRF) L{\"u}bbenau, 28.06-01.07.2015, proceedings}, booktitle = {5th Annual Internation Workshop on Model Reduction in Reaction Flows (IWMRRF) L{\"u}bbenau, 28.06-01.07.2015, proceedings}, pages = {2}, language = {en} } @inproceedings{LehtiniemiBorgMauss, author = {Lehtiniemi, Harry and Borg, Andreas and Mauß, Fabian}, title = {Modeling of Spray Combustion under Diesel Engine Conditions}, series = {Proceedings of the 2nd Conference on Engine Processes, July 2-3, 2015, Berlin, Germany}, booktitle = {Proceedings of the 2nd Conference on Engine Processes, July 2-3, 2015, Berlin, Germany}, editor = {Sens, Marc and Baar, Roland}, publisher = {Universit{\"a}tsverlag der TU Berlin}, address = {Berlin}, isbn = {978-3-7983-2768-9}, pages = {217 -- 249}, language = {en} } @inproceedings{LehtiniemiBorgMauss, author = {Lehtiniemi, Harry and Borg, Andreas and Mauß, Fabian}, title = {Conditional Moment Closure with a Progress Variable Approach}, series = {COMODIA 2012, proceedings of the Eighth International Conference on Modeling and Diagnostics for Advanced Engine Systems, July 23 - 26, 2012, Fukuoka, Japan}, booktitle = {COMODIA 2012, proceedings of the Eighth International Conference on Modeling and Diagnostics for Advanced Engine Systems, July 23 - 26, 2012, Fukuoka, Japan}, publisher = {JSME}, address = {Tokyo}, pages = {548 -- 553}, language = {en} } @misc{PasternakNakovMaussetal., author = {Pasternak, Michal and Nakov, Galin and Mauß, Fabian and Lehtiniemi, Harry}, title = {Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines}, series = {Combustion Science and Technology}, volume = {186}, journal = {Combustion Science and Technology}, number = {10-11}, issn = {1563-521X}, doi = {10.1080/00102202.2014.935213}, pages = {1517 -- 1535}, language = {en} } @article{MaussLehtiniemiBalthasaretal., author = {Mauß, Fabian and Lehtiniemi, Harry and Balthasar, M. and Magnusson, I.}, title = {Modelling Diesel Spray Ignition Using Detailed Chemistry with a Flamelet Progress Variable Approach}, language = {en} } @incollection{MaussBlurockLehtiniemietal., author = {Mauß, Fabian and Blurock, Edward S. and Lehtiniemi, Harry and Gogan, Adina}, title = {"Speed-up of a stochastic reactor model for a hydrogen fueled SI-engine by PRISM"}, language = {en} } @inproceedings{MaussAhmediSundenetal., author = {Mauß, Fabian and Ahmedi, Abdelhadi and Sund{\´e}n, Bengt and Gogan, Adina and Lehtiniemi, Harry}, title = {"Analysis of an Extended Ionization Equilibrium in the Post-flame Gases for Spark Ignited Combustion"}, doi = {10.1115/ICEF2004-0922}, language = {en} } @inproceedings{MaussLehtiniemiAmneusetal., author = {Mauß, Fabian and Lehtiniemi, Harry and Amn{\´e}us, Per and Balthasar, M. and Karlsson, A. and Magnusson, I. and Gogan, Adina and Sund{\´e}n, Bengt}, title = {Modelling Diesel Spray Ignition Using Detailed Chemistry with a Flamelet Progress Variable Approach}, language = {en} } @inproceedings{MaussMoreacBlurocketal., author = {Mauß, Fabian and Mor{\´e}ac, Gladys and Blurock, Edward S. and Gogan, Adina and Sund{\´e}n, Bengt and Lehtiniemi, Harry}, title = {Automatic Generation of a Detailed Mechanism for the Oxidation of n-Decane}, language = {en} } @inproceedings{MaussLehtiniemiBalthasaretal., author = {Mauß, Fabian and Lehtiniemi, Harry and Balthasar, M. and Magnusson, I.}, title = {Modeling Diesel Engine Combustion with Detailed Chemistry using a Progress Variable Approach}, series = {Powertrain \& Fluid Systems conference and exhibition, San Antonio, Texas USA, October 24 - 27, 2005}, booktitle = {Powertrain \& Fluid Systems conference and exhibition, San Antonio, Texas USA, October 24 - 27, 2005}, publisher = {SAE International}, address = {Warrendale, Pa.}, language = {en} } @inproceedings{MaussGoganSundenetal., author = {Mauß, Fabian and Gogan, Adina and Sund{\´e}n, Bengt and Lehtiniemi, Harry}, title = {"Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock"}, language = {en} } @article{MaussNetzellLehtiniemi, author = {Mauß, Fabian and Netzell, Karl and Lehtiniemi, Harry}, title = {"Calculating the Soot Particle Size Distribution Function in Turbulent Diffusion Flames using a Sectional Method"}, language = {en} } @inproceedings{MaussLehtiniemiNetzell, author = {Mauß, Fabian and Lehtiniemi, Harry and Netzell, Karl}, title = {Calculating soot in a turbulent jet diffision flame using the unsteady flamelet model}, series = {Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 3 - 6, 2005}, booktitle = {Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 3 - 6, 2005}, publisher = {Combustion Inst.}, address = {Louvain-la-Neuve}, language = {en} } @inproceedings{MaussNetzellLehtiniemietal., author = {Mauß, Fabian and Netzell, Karl and Lehtiniemi, Harry and Gogan, Adina and Sund{\´e}n, Bengt}, title = {Aspects of Modeling Soot Formation in Turbulent Diffusion Flames}, language = {en} } @misc{WenzelGezginSteineretal., author = {Wenzel, Paul and Gezgin, A. and Steiner, R{\"u}diger and Kr{\"u}ger, Christian and Netzell, Karl and Lehtiniemi, Harry and Mauß, Fabian}, title = {Modeling of the soot particle size distribution in diesel engines}, series = {Conference proceedings, Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, September 12th - 15th 2006, Valencia, Spain}, journal = {Conference proceedings, Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, September 12th - 15th 2006, Valencia, Spain}, publisher = {Univ. Polit{\´e}cnica}, address = {Valencia}, isbn = {84-9705-982-4}, pages = {397 -- 410}, language = {en} } @inproceedings{SamuelssonGoganNetzelletal., author = {Samuelsson, K. and Gogan, Adina and Netzell, Karl and Lehtiniemi, Harry and Sund{\´e}n, Bengt and Mauß, Fabian}, title = {Modeling Diesel Engine Combustion and Pollutant Formation using a Stochastic Reactor Model Approach}, series = {Book of abstracts, Fifth Symposium Towards Clean Diesel Engines, 2 - 3 June 2005, Lund, Sweden}, booktitle = {Book of abstracts, Fifth Symposium Towards Clean Diesel Engines, 2 - 3 June 2005, Lund, Sweden}, publisher = {Univ., Lund Institute of Technology}, address = {Lund}, language = {en} } @article{MaussNetzellLehtiniemi, author = {Mauß, Fabian and Netzell, Karl and Lehtiniemi, Harry}, title = {"Aspects of Modeling Soot Formation in Turbulent Diffusion Flames"}, language = {en} } @misc{FrankenDugganMatriscianoetal., author = {Franken, Tim and Duggan, Alexander and Matrisciano, Andrea and Lehtiniemi, Harry and Borg, Anders and Mauß, Fabian}, title = {Multi-Objective Optimization of Fuel Consumption and NO x Emissions with Reliability Analysis Using a Stochastic Reactor Model}, series = {SAE Technical Paper}, journal = {SAE Technical Paper}, issn = {0148-7191}, doi = {10.4271/2019-01-1173}, abstract = {The introduction of a physics-based zero-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of future compression-ignited engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during the simulation-based multi-objective optimization, genetic algorithms are proven to be an effective tool. Based on an initial set of designs, the algorithm aims to evolve the designs to find the best parameters for the given constraints and objectives. The extension by response surface models improves the prediction of the best possible Pareto Front, while the time of optimization is kept low. This work presents a novel methodology to couple the stochastic reactor model and the Non-dominated Sorting Genetic Algorithm. First, the stochastic reactor model is calibrated for 10 low, medium and high load operating points at various engine speeds. Second, each operating point is optimized to find the lowest fuel consumption and specific NOx emissions. The optimization input parameters are the temperature at intake valve closure, the compression ratio, the start of injection, the injection pressure and exhaust gas recirculation rate. Additionally, it is ensured that the maximum peak cylinder pressure and turbine inlet temperature are not exceeded. This enables a safe operation of the engine and exhaust aftertreatment system under the optimized conditions. Subsequently, a reliability analysis is performed to estimate the effect of off-nominal conditions on the objectives and constraints. The novel multi-objective optimization methodology has proven to deliver reasonable results. The zero-dimensional stochastic reactor model with tabulated chemistry is a fast running physics-based model that allow to run large optimization problems in a short amount of time. The combination with the reliability analysis also strengthens the confidence in the simulation-based optimized engine operation parameters.}, language = {en} }