@misc{KostorzFlanaginGlasauer, author = {Kostorz, Kathrin and Flanagin, Virginia and Glasauer, Stefan}, title = {Synchronization between instructor and observer when learning a complex bimanual skill}, series = {Neuroimage}, journal = {Neuroimage}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2020.116659}, pages = {20}, abstract = {While learning from an instructor by watching a 'how-to' video has become common practice, we know sur- prisingly little about the relation between brain activities in instructor and observers. In this fMRI study we investigated the temporal synchronization between instructor and observers using intersubject correlation in the naturalistic setting of learning to fold origami. Brain activity of the blindfolded instructor during action pro- duction was compared to the observers while they viewed the instructor's video-taped actions. We demonstrate for the first time that the BOLD activity in the instructor's and observer's brain are synchronized while observing and learning a manual complex task with the goal of reproducing it. We can rule out that this synchrony originates from visual feedback. Observers exhibiting higher synchrony with the instructor in the ventral premotor cortex, while viewing the video for the first time, were more successful in reproducing the origami afterwards. Furthermore, changes in instructor-observer synchrony across observational learning sessions occur in cerebellar areas, as well as differences in instructor-observer synchrony between learning and the counting folds, our non- learning control. Not only known cerebellar motor production areas show synchrony, shedding new light on the involvement of the cerebellum in action observation and learning.}, language = {en} } @misc{KostorzFlanaginGlasauer, author = {Kostorz, Kathrin and Flanagin, Virginia and Glasauer, Stefan}, title = {Instructor-observer synchronization of BOLD activity mediated by instructive origami videos}, series = {Neuroscience 2018}, journal = {Neuroscience 2018}, language = {en} } @misc{KostorzFlanaginGlasauer, author = {Kostorz, Kathrin and Flanagin, Virginia and Glasauer, Stefan}, title = {Intersubject synchrony of viewers during naturalistic observational learning of a complex bimanual task}, series = {Neuroimage: Reports}, volume = {2}, journal = {Neuroimage: Reports}, number = {2}, issn = {2666-9560}, doi = {10.1016/j.ynirp.2022.100084}, pages = {18}, abstract = {Watching an instructional video has become a common way to learn a new task. However, we have but a sparse understanding of the neural processes involved during observational learning in naturalistic settings. Recently developed data driven methods for analyzing brain activity provide an opportunity for further investigation. Here, we evaluate intersubject synchrony during fMRI to understand common brain processes during naturalistic observational learning. Participants solitarily watched an instructional video and learned how to fold a paper figure. Three learning runs were sufficient to successfully solve the task. To assess interbrain synchrony, we extended previous principal component (PCA)-based methods to an intersubject principal component analysis (PCA), which offers multiple measures for additional insights into the nature of the synchrony. Using the different metrics of this method, we show a robust synchronous involvement of the action observation execution network (AOEN) in observational learning, between subjects as well as within subjects, regardless of the task or video content. Importantly, additional areas such as the cerebellum, primary motor cortex, control, and sensory integration areas also showed robust synchrony in observational learning. Complimentary to this robust general synchrony, individual regions of the AOEN exhibited task-related differences. Synchrony decreased during the learning process, likely reflecting task state and individual learning strategies. To test the stimulus as a possible source of synchrony, we quantified the temporal structure as the optic flow of the instructional video. Optic flow was strongly related to common activation of the somatomotor areas of the AOEN well beyond visual areas, but could not completely explain synchrony. Thus, although visual motion provides a proxy for meaningful hand actions, our results suggest that intersubject synchrony reflects common cognitive processing during observa- tional learning beyond sensory input.}, language = {en} }