@inproceedings{KlaukeKuehhornGolzeetal., author = {Klauke, Thomas and K{\"u}hhorn, Arnold and Golze, Mark and Villwock, J. and Lenk, Olaf}, title = {Finite-Elemente-Anwendung neuerer Faserverbund-Bruchkriterien und deren Verifizierung mittels CFK-Bauteilpr{\"u}fung}, series = {Deutscher Luft- und Raumfahrtkongress 2003, M{\"u}nchen, 17. bis 20. November 2003, Bd. 1}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2003, M{\"u}nchen, 17. bis 20. November 2003, Bd. 1}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, pages = {113 -- 120}, language = {de} } @misc{KlaukeKuehhornBeirowetal., author = {Klauke, Thomas and K{\"u}hhorn, Arnold and Beirow, Bernd and Golze, Mark}, title = {Numerical Investigations of Localized Vibrations of Mistuned Blade Integrated Disks (Blisks)}, language = {de} } @misc{GambittaBeirowKlauke, author = {Gambitta, Marco and Beirow, Bernd and Klauke, Thomas}, title = {Investigation of Rear Blisk Drum Dynamics Under Consideration of Multi-Stage Coupling}, series = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, journal = {Proceedings of ASME Turbo Expo 2023, Boston, Massachusetts, June 26-30, 2023}, isbn = {978-0-7918-8705-9}, doi = {10.1115/GT2023-103756}, abstract = {The analysis of the structural dynamics of multistage cyclic structures as linked components is required to model the interstage coupling. In turbomachinery, this can result in a collaboration between different compressor or turbine stages. This paper investigates the coupling between two rear drum blade integrated disk stages of an axial compressor to support the mechanical design process. Considering the vibration modeshapes of a multistage system, different components may co-participate in the dynamics. For this reason, a criteria to identify the modes affected by the coupling and to quantify this coupling is defined. This allows to distinguish between modes with inter-stage coupling, requiring the multistage system for their description, and uncoupled modes, involving a single stage. In addition, it is of interest to research methods to reduce the impact of the coupling on the vibrating system without drastically altering the geometry of the components. The vibration analyses of a two-stage compressor generalized geometry, representative of a compressor rear drum blisk, is presented as a study case. The use of a reducing method allows to describe the behavior of the nominal multistage system with a computationally efficient technique, enabling a parametric analysis of the stages' coupling. The investigation considers the effect of a set of geometrical and mechanical parameters on the dynamics, identifying the driving parameters of the coupled vibration characteristics.}, language = {en} } @inproceedings{KuehhornBeirowParchemetal., author = {K{\"u}hhorn, Arnold and Beirow, Bernd and Parchem, Roland and Klauke, Thomas}, title = {Schaufelschwingungen bei realen Verdichter-Integralr{\"a}dern (BLISK)}, series = {Deutscher Luft- und Raumfahrtkongress 2006, Braunschweig, 06. bis 09. November 2006, Bd. 2}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2006, Braunschweig, 06. bis 09. November 2006, Bd. 2}, publisher = {Dt. Ges. f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, pages = {1199 -- 1208}, language = {de} } @misc{HanschkeKlaukeKuehhorn, author = {Hanschke, Benjamin and Klauke, Thomas and K{\"u}hhorn, Arnold}, title = {The Effect of Foreign Object Damage on Compressor Blade High Cycle Fatigue Strength}, series = {ASME Turbo Expo 2017, GT2017-63559, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, journal = {ASME Turbo Expo 2017, GT2017-63559, June 26-30, 2017, Charlotte, NC, USA, Volume 7A}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-5092-3}, doi = {10.1115/GT2017-63599}, pages = {9}, abstract = {For a considerable amount of time blade integrated disks (blisks) are established as a standard component of high pressure compressors (HPCs) in aero engines. Due to the steady requirement to increase the efficiency of modern HPCs, blade profiles get thinned out and aerodynamic stage loading increases. Ever since, aerofoil design has to balance structural and aerodynamic requirements. One particularity of aero engines is the possibility to ingest different kinds of debris during operation and some of those particles are hard enough to seriously damage the aerofoil. Lately, a growing number of blisk-equipped aero engines entered service and the question of foreign object damage (FOD) sensitivity relating to compressor blade high cycle fatigue (HCF) has emerged. Correct prediction of fatigue strength drop due to a FOD provides a huge chance for cost cutting in the service sector as on-wing repairs (e.g. borescope blending) are much more convenient than the replacement of whole blisks and corresponding engine strips. The aim of this paper is to identify critical FOD-areas of a modern HPC stage and to analyze the effects of stress concentrations — caused by FOD — on the fatigue strength. A process chain has been developed, that automatically creates damaged geometries, meshes the parts and analyses the fatigue strength. Amplitude frequency strength (af-strength) has been chosen as fatigue strength indicator owing to the fact, that amplitudes and frequencies of blade vibrations are commonly measured either by blade tip timing or strain gauges. Furthermore, static and dynamic stress concentrations in damaged geometries compared to the reference design were computed. A random variation of input parameters was performed, such as the radial damage position at blade leading edge and damage diameter. Based on results of the different samples, correlations of input parameters and the fatigue strength drop have been investigated. Evaluation shows a significant mode dependence of critical blade areas with a large scatter between drops in fatigue strength visible for mode to mode comparison. Keeping in mind the necessity of fast response times in the in-service sector, FOD sensitivity computations could be performed for all blade rows of the HPC — including the analysis of possible borescope blending geometries — in the design stage. Finally, the actual amplitude frequency levels (af-levels) of the modes excited during operation have to be appropriately taken into consideration. For example, a pronounced af-strength drop due to a FOD may not be critical for safe engine operations because the observed mode is excited by small af-levels during operation. Hence, the endurance ratio — a quotient of af-level and af-strength — is used as assessment criterion. Copyright © 2017 by ASME}, language = {en} } @inproceedings{GerkeMaurerKlaukeetal., author = {Gerke, Horst H. and Maurer, Thomas and Klauke, A. and Dominik, R. and Dimitrov, M. and Biemelt, Detlef and Badorreck, Annika}, title = {Modelling the initial 3D sediment structure of an artificially constructed hydrological catchment}, series = {EGU General Assembly 2008, Wien}, booktitle = {EGU General Assembly 2008, Wien}, publisher = {European Geophysical Society}, address = {Katlenburg-Lindau}, language = {en} } @misc{GerkeMaurerDuseketal., author = {Gerke, Horst H. and Maurer, Thomas and Dusek, J. and Klauke, A. and Badorreck, Annika}, title = {A 3D structural model of a lignitic mine soil based on classification and interpolation of profile images}, series = {EUROSOIL 2008, Book of Abstracts, 25.-29. August 2008, Vienna, Austria}, journal = {EUROSOIL 2008, Book of Abstracts, 25.-29. August 2008, Vienna, Austria}, editor = {Blum, Winfried E. H. and Gerzabek, Martin H. and Vodrazka, Martin}, publisher = {University of Natural Resources and Applied Life Sciences (BOKU)}, address = {Wien}, isbn = {978-3-902382-05-4}, pages = {S. 175}, language = {en} }