@misc{GuentherMaussKlaueretal., author = {G{\"u}nther, Vivien and Mauß, Fabian and Klauer, Christian and Schlawitschek, Christiane}, title = {Kinetic Monte Carlo simulation of the epitaxial growth of Si(100)}, series = {Physica status solidi : C}, volume = {9}, journal = {Physica status solidi : C}, number = {10-11}, issn = {1610-1634}, pages = {1955 -- 1962}, language = {en} } @inproceedings{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {On the Influence of Inlet Gas Variations and Gas Phase Chemistry in a Three-Way Catalyst}, series = {COMODIA - The Ninth International Conference on Modeling and Diagnostics for Advanced, July 25, 2017 - July 28, 2017}, booktitle = {COMODIA - The Ninth International Conference on Modeling and Diagnostics for Advanced, July 25, 2017 - July 28, 2017}, doi = {10.1299/jmsesdm.2017.9.A308}, abstract = {The conversion effects of a three-way catalyst are simulated in previous works using single and multiple representative channel approaches with detailed surface kinetic models. In addition, this article introduces global gas phase chemistry to the model. This allows reflecting ongoing reactions due to incomplete combustion products in low temperature regime. The 1D single-channel model representative for the catalyst is used here. Next to the comparison of the catalyst outlet emissions with and without gas phase chemistry, the transient temperature increase is simulated in order to model the catalysts light off temperature. Additionally, the transient inlet emissions are enhanced to show the influence of water and hydrogen on the modeling results. The heat transfer is modeled by wall heat losses to provide proper heat dissipation out of the catalyst. The modeling results show a good agreement to the experimental data with low computational cost.}, language = {en} } @misc{FrankenKlauerKienbergetal., author = {Franken, Tim and Klauer, Christian and Kienberg, Martin and Matrisciano, Andrea and Mauß, Fabian}, title = {Prediction of thermal stratification in an engine-like geometry using a zero-dimensional stochastic reactor model}, series = {International Journal of Engine Research}, journal = {International Journal of Engine Research}, isbn = {2041-3149}, issn = {1468-0874}, doi = {10.1177/1468087418824217}, pages = {14}, language = {en} } @inproceedings{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and Guenther, Vivien and Mauß, Fabian}, title = {Simulation of a three-way catalyst using a transient multi-channel model}, series = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, booktitle = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, address = {Dubrovnik}, pages = {570 -- 574}, abstract = {The conversion effects of a three-way catalyst (TWC) are simulated in previous works using single-channel approaches and detailed kinetic models. In addition to the single-channel model multiple representative catalyst channels are used in this work to take heat transfer between the channels into account. Furthermore, different inlet temperature distributions are considered and tested. An experimental four-stroke engine setup with emission outputs fed into a TWC is used to validate the model. Furthermore, the temperature progress is simulated to reflect the catalyst's light off temperature. Heat conduction between the channels is modeled to provide proper heat dissipation during the catalytic process. A good agreement to the experimental data can be achieved with low computational cost.}, language = {en} } @misc{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Development of a Physical Parameter Optimizer for 1D Catalyst Modeling on the Example of a Transient Three-Way Catalyst Experiment, 37th International Symposium on Combustion 2018, Dublin}, pages = {1}, abstract = {The importance of catalytic after-treatment for automotive emissions is not neglectable concerning current environmental protection discussions. A reasonable and time efficient catalyst model can help to reduce the necessity of time consuming experimental investigations on physical parameters for catalytic converter construction. It can further support the preparation of necessary experimental setups to analyze physical and chemical phenomena in catalysts. Physical parameter and/or chemical kinetic optimizers can be an advanced tool to support computational models in terms of adjustment to an experiment. In this work a physical parameter optimizer is developed and validated against a transient three-way catalyst experiment. The modeling results are compared to the measured data in terms of temperature and emission conversion behavior and show a good agreement.}, language = {en} } @misc{PasternakMaussKlaueretal., author = {Pasternak, Michal and Mauß, Fabian and Klauer, Christian and Matrisciano, Andrea}, title = {Diesel engine performance mapping using a parametrized mixing time model}, series = {International Journal of Engine Research}, volume = {19}, journal = {International Journal of Engine Research}, number = {2}, issn = {2041-3149}, doi = {10.1177/1468087417718115}, pages = {202 -- 213}, language = {en} } @misc{AslanjanKlauerGuentheretal., author = {Aslanjan, Jana and Klauer, Christian and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Simulation of a three-way-catalyst using a transient multi-channel model}, pages = {S. 103}, abstract = {The importance to reduce automotive exhaust gas emissions is constantly increasing. Not only the country-specific laws are getting more stringent also the global increase of automobiles is requiring a responsible handling of the issue. The three-way-catalytic converter (TWC) is one of the most common catalysts for the engine exhaust gas after treatment. The reduction of CO, NO and unburned hydrocarbons is fulfilled via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single channel approaches [e.g. Fr{\"o}jd/Mauss, SAE International 2011-01-1306] and detailed kinetic models [e.g Chatterjee et al., Faraday Discussions 119 (2001) 371-384 and Koop et al., Appl. Catal.B: Environmental 91 (2009), 47-58]. In this work multiple representative catalyst channels are used to take heat variations in between the catalyst into account. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC. Next to the emissions the transient temperature increase is simulated in order to model the catalyst light off temperature. The heat transfer is modelled by wall heat losses to provide a proper heat dissipation out of the catalyst. The simulation results show a good agreement to the experimental data with low computational cost.}, language = {en} } @misc{SeidelNetzerHilbigetal., author = {Seidel, Lars and Netzer, Corinna and Hilbig, Martin and Mauß, Fabian and Klauer, Christian and Pasternak, Michal and Matrisciano, Andrea}, title = {Systematic reduction of detailed chemical reaction mechanisms for engine applications}, series = {Journal of Engineering for Gas Turbines and Power}, volume = {139}, journal = {Journal of Engineering for Gas Turbines and Power}, number = {9}, issn = {1528-8919}, doi = {10.1115/1.4036093}, pages = {091701-1 -- 091701-9}, abstract = {In this work, we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment-based accuracy rating method for species profiles. The concept is used for a necessity-based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for computational fluid dynamics application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.}, language = {en} } @misc{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Klauer, Christian and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Mode}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2017-01-0538}, issn = {0096-5170}, doi = {10.4271/2017-01-0538}, pages = {11 Seiten}, language = {en} } @misc{AslanjanKlauerPerlmanetal., author = {Aslanjan, Jana and Klauer, Christian and Perlman, Cathleen and G{\"u}nther, Vivien and Mauß, Fabian}, title = {Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models}, series = {SAE technical paper}, journal = {SAE technical paper}, number = {2017-01-0966}, issn = {0148-7191}, doi = {10.4271/2017-01-0966}, pages = {11 Seiten}, language = {en} } @inproceedings{NetzerSeidelPasternaketal., author = {Netzer, Corinna and Seidel, Lars and Pasternak, Michal and Klauer, Christian and Perlman, Cathleen and Ravet, Fr{\´e}d{\´e}ric and Mauß, Fabian}, title = {Impact of Gasoline Octane Rating on Engine Knock using Detailed Chemistry and a Quasi-dimensional Stochastic Reaktior Model}, series = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, booktitle = {Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia}, pages = {493 -- 498}, language = {en} } @inproceedings{SeidelNetzerHilbigetal., author = {Seidel, Lars and Netzer, Corinna and Hilbig, Martin and Mauß, Fabian and Klauer, Christian and Pasternak, Michal and Matrisciano, Andrea}, title = {Systematic Reduction of Detailed Chemical Reaction Mechanisms for Engine Applications}, series = {ASME 2016 Internal Combustion Engine Division Fall Technical Conference Greenville, South Carolina, USA, October 9-12, 2016}, booktitle = {ASME 2016 Internal Combustion Engine Division Fall Technical Conference Greenville, South Carolina, USA, October 9-12, 2016}, publisher = {The American Society of Mechanical Engineers}, address = {New York, N.Y.}, isbn = {978-0-7918-5050-3}, pages = {12}, abstract = {In this work we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment based accuracy rating method for species profiles. The concept is used for a necessity based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model (SRM) for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for CFD application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme.}, language = {en} } @inproceedings{MatriscianoSeidelKlaueretal., author = {Matrisciano, Andrea and Seidel, Lars and Klauer, Christian and Lehtiniemi, Harry and Mauß, Fabian}, title = {An a priori thermodynamic data analysis based chemical lumping method for the reduction of large and multi-component chemical kinetic mechanisms}, series = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, booktitle = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, pages = {2}, abstract = {A chemical species lumping approach for reduction of large hydrocarbons and oxygenated fuels is presented. The methodology is based on an a priori analysis of the Gibbs free energy of the isomer species which is then used as main criteria for the evaluation of lumped group. Isomers with similar Gibbs free energy are lumped assuming they present equal concentrations when applied to standard reactor conditions. Unlike several lumping approaches found in literature, no calculation results from the primary mechanism have been employed prior to the application of our chemical lumping strategy.}, language = {en} } @inproceedings{SeidelKlauerPasternaketal., author = {Seidel, Lars and Klauer, Christian and Pasternak, Michal and Matrisciano, Andrea and Netzer, Corinna and Hilbig, Martin and Mauß, Fabian}, title = {Systematic Mechanism Reduction for Engine Applications}, series = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, booktitle = {5th International Workshop on Model Reduction in Reacting Flows, L{\"u}bbenau, 2015}, pages = {2}, abstract = {In this work we apply various concepts of mechanism reduction with a PDF based method for species profile conservation. The reduction process is kept time efficient by only using 0D and 1D reactors. To account for the expansion phase in internal combustion engines a stochastic engine tool is used to validate the reduction steps.}, language = {en} } @inproceedings{MatriscianoSeidelKlaueretal., author = {Matrisciano, Andrea and Seidel, Lars and Klauer, Christian and Mauß, Fabian and Lehtiniemi, Harry}, title = {An a priori thermodynamic data analysis based on chemical lumping method for the reduction of large and multi-component chemical kinetic mechanisms}, series = {5th Annual Internation Workshop on Model Reduction in Reaction Flows (IWMRRF) L{\"u}bbenau, 28.06-01.07.2015, proceedings}, booktitle = {5th Annual Internation Workshop on Model Reduction in Reaction Flows (IWMRRF) L{\"u}bbenau, 28.06-01.07.2015, proceedings}, pages = {2}, language = {en} }