@misc{SharmaMedinaMendezSchmidtetal., author = {Sharma, Dikshant and Medina M{\´e}ndez, Juan Ali and Schmidt, Heiko and Cremer, Tilman}, title = {Seasonal cold storage with borehole heat exchangers: an application study using numerical simulations}, series = {Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und W{\"a}rme- und Stoff{\"u}bertragung, 6.-8. M{\"a}rz 2023, Frankfurt am Main, Deutschland}, journal = {Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und W{\"a}rme- und Stoff{\"u}bertragung, 6.-8. M{\"a}rz 2023, Frankfurt am Main, Deutschland}, publisher = {DECHEMA e.V.}, address = {Frankfurt am Main}, pages = {18 -- 19}, language = {en} } @misc{MedinaMendezSharmaSchmidtetal., author = {Medina M{\´e}ndez, Juan Al{\´i} and Sharma, Sparsh and Schmidt, Heiko and Klein, Marten}, title = {Towards the use of a reduced order and stochastic turbulence model for assessment of far-field sound radiation: low Mach number jet flows}, series = {Book of Abstracts of the 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics}, journal = {Book of Abstracts of the 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics}, publisher = {GAMM e.V.}, address = {Dresden}, pages = {413 -- 414}, language = {en} } @misc{MedinaMendezSharmaSchmidtetal., author = {Medina M{\´e}ndez, Juan Ali and Sharma, Sparsh and Schmidt, Heiko and Klein, Marten}, title = {Toward the use of a reduced-order and stochastic turbulence model for assessment of far-field sound radiation: Low Mach number jet flows}, series = {Proceedings in Applied Mathematics and Mechanics}, volume = {23}, journal = {Proceedings in Applied Mathematics and Mechanics}, number = {3}, issn = {1617-7061}, doi = {10.1002/pamm.202300186}, pages = {9}, language = {en} } @misc{RakhiKleinMedinaMendezetal., author = {Rakhi, Rakhi and Klein, Marten and Medina M{\´e}ndez, Juan Ali and Schmidt, Heiko}, title = {One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS}, series = {Journal of Turbulence}, volume = {20}, journal = {Journal of Turbulence}, number = {8}, issn = {1468-5248}, doi = {10.1080/14685248.2019.1674859}, pages = {506 -- 543}, abstract = {The incompressible temporally developing turbulent boundary layer (TBL) is analysed using the map-based stochastic one-dimensional turbulence (ODT) model. The TBL is a canonical flow problem, which is, in the present study, formed by a planar moving wall and a free stream at rest. An understanding of this idealised flow is of fundamental relevance for the numerical analysis of turbulent boundary-layer-type flows. In the present ODT simulations, the flow variables are resolved on all scales along a wall-normal, one-dimensional domain. These variables are evolved by a deterministic and a stochastic process. The latter models the effect of turbulent advection and pressure fluctuations, whereas the former represents molecular diffusion. The model is appropriate for high Reynolds numbers for which the turbulence field exhibits a broad range of scales and is notionally featureless. We show that ODT is able to capture salient features of the TBL by comparing the various statistics with available reference direct numerical simulation (DNS) results for different bulk Reynolds numbers in the range 250 ≤ Reb ≤ 2000 using fixed model parameters. The influence of the model parameters is analysed for Reb = 1000 and optimal parameter values are provided. The results discussed in this paper suggest that ODT is an economical and reasonably accurate approach for the simulation of transient turbulent boundary-layer-type flows.}, language = {en} }