@misc{KleinMedinaMendezSchmidt, author = {Klein, Marten and Medina M{\´e}ndez, Juan Al{\´i} and Schmidt, Heiko}, title = {Stochastic modeling of electrohydrodynamically enhanced drag in one-way and fully coupled turbulent Poiseuille and Couette flow}, series = {Technische Mechanik}, volume = {43}, journal = {Technische Mechanik}, number = {1}, issn = {0232-3869}, doi = {10.24352/UB.OVGU-2023-049}, pages = {111 -- 127}, abstract = {Joint predictive modeling of hydrodynamics and electrokinetics is a standing numerical challenge but crucial for various applications in electrochemistry and power engineering. The present lack in modeling of electrohydrodynamic (EHD) turbulent flows lies in the treatment of small-scale processes and scale interactions. To overcome these limitations, a stochastic one-dimensional turbulence (ODT) model is utilized. The model aims to resolve all scales of the flow, but only on a notional line-of-sight, modeling turbulent advection by a stochastically sampled sequence of eddy events that punctuate deterministic molecular diffusive advancement. In this study, two canonical flow configurations are investigated that address different coupling strategies and flow physics. First, EHD effects in a variable-density vertical pipe flow of an ideal gas with an inner concentric electrode are investigated with a one-way coupled model formulation. Electric fields are generated by means of a corona discharge and the corresponding effect of a fixed ionic charge density field. Second, in order to reduce physical complexity, EHD effects the turbulent boundary layers in plane Couette flow of an isothermal univalent ionic liquid are investigated with a fully coupled model formulation. Both application cases demonstrate that ODT has predictive capabilities due to multiscale resolution of transport processes. Present results suggest that more expensive fully than one-way coupling of electrokinetics is crucial when charge relaxation times are significantly larger than the mean advection time scale.}, language = {en} } @misc{SharmaMedinaMendezSchmidtetal., author = {Sharma, Dikshant and Medina M{\´e}ndez, Juan Ali and Schmidt, Heiko and Cremer, Tilman}, title = {Seasonal cold storage with borehole heat exchangers: an application study using numerical simulations}, series = {Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und W{\"a}rme- und Stoff{\"u}bertragung, 6.-8. M{\"a}rz 2023, Frankfurt am Main, Deutschland}, journal = {Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und W{\"a}rme- und Stoff{\"u}bertragung, 6.-8. M{\"a}rz 2023, Frankfurt am Main, Deutschland}, publisher = {DECHEMA e.V.}, address = {Frankfurt am Main}, pages = {18 -- 19}, language = {en} } @misc{MedinaMendezSharmaSchmidtetal., author = {Medina M{\´e}ndez, Juan Al{\´i} and Sharma, Sparsh and Schmidt, Heiko and Klein, Marten}, title = {Towards the use of a reduced order and stochastic turbulence model for assessment of far-field sound radiation: low Mach number jet flows}, series = {Book of Abstracts of the 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics}, journal = {Book of Abstracts of the 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics}, publisher = {GAMM e.V.}, address = {Dresden}, pages = {413 -- 414}, language = {en} } @misc{MedinaMendezSharmaSchmidtetal., author = {Medina M{\´e}ndez, Juan Ali and Sharma, Sparsh and Schmidt, Heiko and Klein, Marten}, title = {Toward the use of a reduced-order and stochastic turbulence model for assessment of far-field sound radiation: Low Mach number jet flows}, series = {Proceedings in Applied Mathematics and Mechanics}, volume = {23}, journal = {Proceedings in Applied Mathematics and Mechanics}, number = {3}, issn = {1617-7061}, doi = {10.1002/pamm.202300186}, pages = {9}, language = {en} }