@misc{MannocciBaroniMelacarneetal., author = {Mannocci, Piergiulio and Baroni, Andrea and Melacarne, Enrico and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {In-Memory Principal Component Analysis by Crosspoint Array of Rresistive Switching Memory}, series = {IEEE Nanotechnology Magazine}, volume = {16}, journal = {IEEE Nanotechnology Magazine}, number = {2}, issn = {1932-4510}, doi = {10.1109/MNANO.2022.3141515}, pages = {4 -- 13}, abstract = {In Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrixvector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMCbased PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43\%, close to floatingpoint implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.}, language = {en} } @misc{RizziBaroniGlukhovetal., author = {Rizzi, Tommaso and Baroni, Andrea and Glukhov, Artem and Bertozzi, Davide and Wenger, Christian and Ielmini, Daniele and Zambelli, Cristian}, title = {Process-Voltage-Temperature Variations Assessment in Energy-Aware Resistive RAM-Based FPGAs}, series = {IEEE Transactions on Device and Materials Reliability}, volume = {23}, journal = {IEEE Transactions on Device and Materials Reliability}, number = {3}, issn = {1530-4388}, doi = {10.1109/TDMR.2023.3259015}, pages = {328 -- 336}, abstract = {Resistive Random Access Memory (RRAM) technology holds promises to improve the Field Programmable Gate Array (FPGA) performance, reduce the area footprint, and dramatically lower run-time energy requirements compared to the state-of-the-art CMOS-based products. However, the integration of RRAM in FPGAs is hindered by the high programming power consumption and by non-ideal behaviors of the device due to its stochastic nature that may overshadow the benefits in normal operation mode. To cope with these challenges, optimized programming strategies have to be investigated. In this work, we explore the impact that different procedures to set the device have on the run-time performance. Process, voltage, and temperature (PVT) variations as well as time-dependent drift effect of the RRAM device are considered in the assessment of 4T1R MUX designs characteristics. The comparison with tradition CMOS implementations reveals how the choice of the target resistive state and the programming algorithm are key design aspects to reduce the run-time delay and energy metrics, while at the same time improving the robustness against the different sources of variations.}, language = {en} } @misc{BaroniGlukhovPerezetal., author = {Baroni, Andrea and Glukhov, Artem and Perez, Eduardo and Wenger, Christian and Calore, Enrico and Schifano, Sebastiano Fabio and Olivo, Piero and Ielmini, Daniele and Zambelli, Cristian}, title = {An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories}, series = {Frontiers in Neuroscience}, volume = {Vol. 16}, journal = {Frontiers in Neuroscience}, issn = {1662-4548}, doi = {10.3389/fnins.2022.932270}, pages = {1 -- 16}, abstract = {One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like Machine Learning and Deep Neural Networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The In-Memory Computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on Resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix-vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we assessed the benefits of the proposed architectures with respect to a GPU-based realization of the same task, evidencing a tenfold improvement in terms of performance and three orders of magnitude with respect to energy efficiency.}, language = {en} } @misc{GlukhovLepriMiloetal., author = {Glukhov, Artem and Lepri, Nicola and Milo, Valerio and Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays}, series = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, journal = {Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022)}, doi = {10.1109/VLSI-SoC54400.2022.9939653}, pages = {1 -- 5}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations.}, language = {en} } @misc{GlukhovMiloBaronietal., author = {Glukhov, Artem and Milo, Valerio and Baroni, Andrea and Lepri, Nicola and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators}, series = {2022 IEEE International Reliability Physics Symposium (IRPS)}, journal = {2022 IEEE International Reliability Physics Symposium (IRPS)}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-7950-9}, issn = {2473-2001}, doi = {10.1109/IRPS48227.2022.9764497}, pages = {3C.3-1 -- 3C.3-7}, abstract = {Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators.}, language = {en} } @misc{BaroniGlukhovPerezetal., author = {Baroni, Andrea and Glukhov, Artem and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele and Olivo, Piero and Zambelli, Cristian}, title = {Low Conductance State Drift Characterization and Mitigation in Resistive Switching Memories (RRAM) for Artificial Neural Networks}, series = {IEEE Transactions on Device and Materials Reliability}, volume = {22}, journal = {IEEE Transactions on Device and Materials Reliability}, number = {3}, issn = {1530-4388}, doi = {10.1109/TDMR.2022.3182133}, pages = {340 -- 347}, abstract = {The crossbar structure of Resistive-switching random access memory (RRAM) arrays enabled the In-Memory Computing circuits paradigm, since they imply the native acceleration of a crucial operations in this scenario, namely the Matrix-Vector-Multiplication (MVM). However, RRAM arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation. A critical one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are mandatory for an accurate multi-level conductance operation. In this work, we analyze the benefits of a new programming algorithm that embodies Set and Reset switching operations to achieve better conductance control and lower variability. Data retention analysis performed with different temperatures for 168 hours evidence its superior performance with respect to standard programming approach. Finally, we explored the benefits of using our methodology at a higher abstraction level, through the simulation of an Artificial Neural Network for image recognition task (MNIST dataset). The accuracy achieved shows higher performance stability over temperature and time.}, language = {en} } @misc{ZanottiPuglisiMiloetal., author = {Zanotti, Tommaso and Puglisi, Francesco Maria and Milo, Valerio and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Ossorio, {\´O}scar G. and Wenger, Christian and Pavan, Paolo and Olivo, Piero and Ielmini, Daniele}, title = {Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays}, series = {IEEE Transactions on Electron Devices}, volume = {67}, journal = {IEEE Transactions on Electron Devices}, number = {11}, issn = {0018-9383}, doi = {10.1109/TED.2020.3025271}, pages = {4611 -- 4615}, abstract = {Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25- μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation.}, language = {en} } @misc{BaroniZambelliOlivoetal., author = {Baroni, Andrea and Zambelli, Cristian and Olivo, Piero and Perez, Eduardo and Wenger, Christian and Ielmini, Daniele}, title = {Tackling the Low Conductance State Drift through Incremental Reset and Verify in RRAM Arrays}, series = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, journal = {2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, isbn = {978-1-6654-1794-5}, issn = {2374-8036}, doi = {10.1109/IIRW53245.2021.9635613}, pages = {5}, abstract = {Resistive switching memory (RRAM) is a promising technology for highly efficient computing scenarios. RRAM arrays enabled the acceleration of neural networks for artificial intelligence and the creation of In-Memory Computing circuits. However, the arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation in those applications. Among those, one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are fundamental for an accurate Multi-level conductance operation. In this work, we tackle the issue by developing an Incremental Reset and Verify technique showing enhanced variability and reliability features compared with a traditional refresh-based approach.}, language = {en} } @misc{MiloAnzaloneZambellietal., author = {Milo, Valerio and Anzalone, Francesco and Zambelli, Cristian and Perez, Eduardo and Mahadevaiah, Mamathamba Kalishettyhalli and Ossorio, {\´O}scar G. and Olivo, Piero and Wenger, Christian and Ielmini, Daniele}, title = {Optimized programming algorithms for multilevel RRAM in hardware neural networks}, series = {IEEE International Reliability Physics Symposium (IRPS), 2021}, journal = {IEEE International Reliability Physics Symposium (IRPS), 2021}, isbn = {978-1-7281-6894-4}, issn = {1938-1891}, doi = {10.1109/IRPS46558.2021.9405119}, abstract = {A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5\% (vs. software 93.27\%) in MNIST recognition.}, language = {en} }